Domination number and Laplacian eigenvalue distribution

被引:20
|
作者
Hedetniemi, Stephen T. [1 ]
Jacobs, David P. [1 ]
Trevisan, Vilmar [2 ]
机构
[1] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[2] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
GRAPHS; TREES;
D O I
10.1016/j.ejc.2015.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m(G)(I) denote the number of Laplacian eigenvalues of a graph G in an interval I. Our main result is that for graphs having domination number gamma, m(G)[0, 1) <= gamma, improving existing bounds in the literature. For many graphs, m(G)[0, 1) = gamma, or m(G)[0, 1) = gamma-1. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 50 条
  • [1] Laplacian eigenvalue distribution, diameter and domination number of trees
    Guo, Jiaxin
    Xue, Jie
    Liu, Ruifang
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (04) : 763 - 775
  • [2] Domination number and Laplacian eigenvalue of trees
    Xue, Jie
    Liu, Ruifang
    Yu, Guanglong
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 592 : 210 - 227
  • [3] Vertex-connectivity, chromatic number, domination number, maximum degree and Laplacian eigenvalue distribution
    Wang, Long
    Yan, Chunyu
    Fang, Xianwen
    Geng, Xianya
    Tian, Fenglei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 607 : 307 - 318
  • [4] Laplacian Distribution and Domination
    Cardoso, Domingos M.
    Jacobs, David P.
    Trevisan, Vilmar
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1283 - 1295
  • [5] The domination number and the least Q-eigenvalue
    Yu, Guanglong
    Guo, Shu-Guang
    Zhang, Rong
    Wu, Yarong
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 274 - 282
  • [6] Minimizing the Laplacian eigenvalues for trees with given domination number
    Feng, Lihua
    Yu, Guihai
    Li, Qiao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (2-3) : 648 - 655
  • [7] The least Q-eigenvalue with fixed domination number
    Yu, Guanglong
    Zhai, Mingqing
    Yan, Chao
    Guo, Shu-guang
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 477 - 487
  • [8] DIAMETER VS. LAPLACIAN EIGENVALUE DISTRIBUTION
    Xu, Leyou
    Zhou, Bo
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2024, 40 : 774 - 787
  • [9] Permanental Bounds of the Laplacian Matrix of Trees with Given Domination Number
    Geng, Xianya
    Hu, Shuna
    Li, Shuchao
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1423 - 1436
  • [10] Laplacian eigenvalue distribution based on some graph parameters
    Cui, Jiaxin
    Ma, Xiaoling
    FILOMAT, 2024, 38 (19) : 6881 - 6890