Domination number and Laplacian eigenvalue distribution

被引:21
作者
Hedetniemi, Stephen T. [1 ]
Jacobs, David P. [1 ]
Trevisan, Vilmar [2 ]
机构
[1] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[2] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
GRAPHS; TREES;
D O I
10.1016/j.ejc.2015.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m(G)(I) denote the number of Laplacian eigenvalues of a graph G in an interval I. Our main result is that for graphs having domination number gamma, m(G)[0, 1) <= gamma, improving existing bounds in the literature. For many graphs, m(G)[0, 1) = gamma, or m(G)[0, 1) = gamma-1. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 26 条
[1]  
[Anonymous], 1962, MATH SOC C PUBLICATI
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[3]  
[Anonymous], 1991, GRAPH THEORY COMBINA
[4]   A sharp upper bound on algebraic connectivity using domination number [J].
Aouchiche, M. ;
Hansen, P. ;
Stevanovic, D. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) :2879-2893
[5]  
Arnautov V.I., 1974, Prikl. Mat. i Prog, V11, P3
[6]   GRAPH-THEORETIC PARAMETERS CONCERNING DOMINATION, INDEPENDENCE, AND IRREDUNDANCE [J].
BOLLOBAS, B ;
COCKAYNE, EJ .
JOURNAL OF GRAPH THEORY, 1979, 3 (03) :241-249
[7]   On the distribution of Laplacian eigenvalues of trees [J].
Braga, Rodrigo O. ;
Rodrigues, Virginia M. ;
Trevisan, Vilmar .
DISCRETE MATHEMATICS, 2013, 313 (21) :2382-2389
[8]  
Brand C., 1996, MATH SLOVACA, V46, P33
[9]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[10]  
Egawa Y, 1999, DISCRETE MATH, V197, P225