Detection of interturn faults during transformer energization using wavelet transform
被引:0
作者:
Olivares-Galvan, Juan C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana Azcapotzalco, Dept Energia, Ciudad De Mexico, MexicoUniv Autonoma Metropolitana Azcapotzalco, Dept Energia, Ciudad De Mexico, Mexico
Olivares-Galvan, Juan C.
[1
]
Escarela-Perez, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana Azcapotzalco, Dept Energia, Ciudad De Mexico, MexicoUniv Autonoma Metropolitana Azcapotzalco, Dept Energia, Ciudad De Mexico, Mexico
Escarela-Perez, R.
[1
]
Guillen, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Div Ingn Elect, Fac Ingn, Mexico City, DF, MexicoUniv Autonoma Metropolitana Azcapotzalco, Dept Energia, Ciudad De Mexico, Mexico
Guillen, Daniel
[2
]
Avalos Gonzalez, J. Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michoacana, Fac Ingn Elect, Div Est Posgrad, Morelia, Michoacan, MexicoUniv Autonoma Metropolitana Azcapotzalco, Dept Energia, Ciudad De Mexico, Mexico
Avalos Gonzalez, J. Alberto
[3
]
Cerda Jacobo, Jaime
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michoacana, Fac Ingn Elect, Div Est Posgrad, Morelia, Michoacan, MexicoUniv Autonoma Metropolitana Azcapotzalco, Dept Energia, Ciudad De Mexico, Mexico
Cerda Jacobo, Jaime
[3
]
Espino-Cortes, Fermin P.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Politecn Nacl UP Adolfo Lopez Mateos, SEPI ESIME Zacatenco, Ciudad De Mexico, MexicoUniv Autonoma Metropolitana Azcapotzalco, Dept Energia, Ciudad De Mexico, Mexico
Espino-Cortes, Fermin P.
[4
]
机构:
[1] Univ Autonoma Metropolitana Azcapotzalco, Dept Energia, Ciudad De Mexico, Mexico
[2] Univ Nacl Autonoma Mexico, Div Ingn Elect, Fac Ingn, Mexico City, DF, Mexico
[3] Univ Michoacana, Fac Ingn Elect, Div Est Posgrad, Morelia, Michoacan, Mexico
[4] Inst Politecn Nacl UP Adolfo Lopez Mateos, SEPI ESIME Zacatenco, Ciudad De Mexico, Mexico
来源:
2016 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC)
|
2016年
Interturn faults are a critical problem in power transformers that can eventually escalate into catastrophic faults and probably result in an overall network failure. Also, failures in transformer windings are still a major cause of transformer outages, and failure rates vary widely between different countries and systems, depending on many factors. Therefore, in this work, interturn faults with various levels of severity were imposed on the winding of a 120 VA, 24/125 V dry type transformer to diagnose it. The obtained signals during the experiments are processed using the Wavelet Transform and correlation modes. This technique only takes into account the high frequency information produced during the energization of a winding with interturn faults.