Multiscale design of elastic solids with biomimetic cancellous bone cellular microstructures

被引:15
作者
Colabella, Lucas [1 ]
Cisilino, Adrian P. [1 ]
Fachinotti, Victor [2 ]
Kowalczyk, Piotr [3 ]
机构
[1] Natl Univ Mar del Plata UNMDP, Natl Sci & Tech Res Council CONICET, Res Inst Mat Sci & Technol INTEMA, Av Juan B Justo, RA-4302 Mar Del Plata, Buenos Aires, Argentina
[2] UNL, CONICET, Predio CCT CONICET Santa Fe, Ctr Invest Metodos Computac CIMEC, Ruta 168, RA-3000 Paraje El Pozo, Santa Fe, Argentina
[3] Polish Acad Sci, Inst Fundamental Technol Res, Pawinskiego 5B, PL-02106 Warsaw, Poland
关键词
Multiscale optimization; Cancellous bone; Parameterized microstructure; Interior-point optimizer; Biomimetic materials; TOPOLOGY OPTIMIZATION; COMPOSITES; ADAPTATION; DENSITY; LAW;
D O I
10.1007/s00158-019-02229-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Natural (or biological) materials usually achieve outstanding mechanical performances. In particular, cancellous bone presents a high stiffness/strength to weight ratio, so its structure inspires the development of novel ultra-light cellular materials. A multiscale method for the design of elastic solids with a cancellous bone parameterized biomimetic microstructure is introduced in this work. The method combines a finite element model to evaluate the stiffness of the body at the macroscale with a gradient-based nonlinear constrained optimization solver to obtain the optimal values of the microparameters and microstructure orientation over the body domain. The most salient features of the implementation are an offline response surface methodology for the evaluation of the microstructure elastic tensor in terms of the microparameters, an adjoint method for the computation of the sensitivity of the macroscopic stiffness to the microparameters, a quasi-Newton approximation for the evaluation of the Hessian matrix of the nonlinear optimizer, and a distance-weighted filter of the microparameters to remediate checkerboard effects. The settings of the above features, the optimizer termination options, and the initial values of the microparameters are investigated for the best performance of the method. The effectiveness of the method is demonstrated for several examples, whose results are compared with the reference solutions calculated using a SIMP method. The method shows to be effective; it attains results coherent with SIMP approaches in terms of stiffness and spatial material distribution. The good performance of the multiscale method is attributed to the capability of the parameterized mimetic microstructure to attain bulk and shear moduli that are close to the Hashin-Shtrikman upper bounds over the complete solid volume fraction range.
引用
收藏
页码:639 / 661
页数:23
相关论文
共 42 条
  • [1] Giga-voxel computational morphogenesis for structural design
    Aage, Niels
    Andreassen, Erik
    Lazarov, Boyan S.
    Sigmund, Ole
    [J]. NATURE, 2017, 550 (7674) : 84 - +
  • [2] High-strength cellular ceramic composites with 3D microarchitecture
    Bauer, Jens
    Hengsbach, Stefan
    Tesari, Iwiza
    Schwaiger, Ruth
    Kraft, Oliver
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (07) : 2453 - 2458
  • [3] Contribution of muscular weakness to osteoporosis: Computational and animal models
    Be'ery-Lipperman, M
    Gefen, A
    [J]. CLINICAL BIOMECHANICS, 2005, 20 (09) : 984 - 997
  • [4] Bendsoe M. P., 2004, Topology optimization: theory, methods, and applications
  • [5] Towards patient-specific material modeling of trabecular bonepost-yield behavior
    Carretta, Roberto
    Lorenzetti, Silvio
    Mueller, Ralph
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2013, 29 (02) : 250 - 272
  • [6] Numerical modeling of bone tissue adaptation-A hierarchical approach for bone apparent density and trabecular structure
    Coelho, P. G.
    Fernandes, P. R.
    Rodrigues, H. C.
    Cardoso, J. B.
    Guedes, J. M.
    [J]. JOURNAL OF BIOMECHANICS, 2009, 42 (07) : 830 - 837
  • [7] Colabella L, 2018, DISENO MULTIESCALA E
  • [8] Mimetization of the elastic properties of cancellous bone via a parameterized cellular material
    Colabella, Lucas
    Cisilino, Adrian P.
    Haiat, Guillaume
    Kowalczyk, Piotr
    [J]. BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2017, 16 (05) : 1485 - 1502
  • [9] Single-trabecula building block for large-scale finite element models of cancellous bone
    Dagan, D
    Be'ery, M
    Gefen, A
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2004, 42 (04) : 549 - 556
  • [10] Sensitivity of the thermomechanical response of elastic structures to microstructural changes
    Fachinotti, Victor D.
    Toro, Sebastian
    Sanchez, Pablo J.
    Huespe, Alfredo E.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2015, 69-70 : 45 - 59