Restrictions of representations of a surface group to a pair of free subgroups

被引:3
作者
Martin, BMS [1 ]
机构
[1] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
关键词
representation variety; surface group; restriction;
D O I
10.1006/jabr.1999.8110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Π be the fundamental group of a compact orientable genus m surface, and let G be a connected reductive algebraic group over an algebraically closed field of characteristic zero. Define two free rank m subgroups of Π by A=〈a1,...,am〉 and B=〈b1,...,bm〉, where Π=〈a1,...,am,b1,...,bm∏mj=1[aj,bj]〉 is the standard presentation of Π. We consider representations of Π, of A and of B into G. Restriction of representations induces a morphism from C(Π,G), the variety of closed conjugacy classes of representations of Π, to C(A,G)×C(B,G). We prove that if m is greater than the semisimple rank of G then this morphism is dominant and almost all fibers are finite. © 2000 Academic Press.
引用
收藏
页码:231 / 249
页数:19
相关论文
共 21 条
[1]  
BARDSLEY P, 1985, P LOND MATH SOC, V51, P295
[2]   UNIPOTENT ELEMENTS AND PARABOLIC SUBGROUPS OF REDUCTIVE GROUPS .1. [J].
BOREL, A ;
TITS, J .
INVENTIONES MATHEMATICAE, 1971, 12 (02) :95-&
[3]  
Borel A., 1991, GRADUATE TEXTS MATH, DOI 10.1007/978-1-4612-0941-6
[4]  
Brown K.S., 1994, Graduate Texts in Mathematics, V87, DOI [10.1007/978-1-4684-9327-6, DOI 10.1007/978-1-4684-9327-6]
[5]  
Fulton W, 1991, Representation theory, Graduate, V129
[6]   TOPOLOGICAL COMPONENTS OF SPACES OF REPRESENTATIONS [J].
GOLDMAN, WM .
INVENTIONES MATHEMATICAE, 1988, 93 (03) :557-607
[7]   THE SYMPLECTIC NATURE OF FUNDAMENTAL-GROUPS OF SURFACES [J].
GOLDMAN, WM .
ADVANCES IN MATHEMATICS, 1984, 54 (02) :200-225
[8]  
Humphreys J. E., 1975, Graduate texts in mathematics, V21
[9]   HALF DENSITY QUANTIZATION OF THE MODULI SPACE OF FLAT CONNECTIONS AND WITTEN SEMICLASSICAL MANIFOLD INVARIANTS [J].
JEFFREY, LC ;
WEITSMAN, J .
TOPOLOGY, 1993, 32 (03) :509-529
[10]  
Johnson D., 1987, PROGR MATH, V67, P48, DOI 10.1007/978-1-4899-6664-3_3