Structure of the set of paraxial optical systems

被引:82
作者
Simon, R
Wolf, KB
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
来源
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION | 2000年 / 17卷 / 02期
关键词
D O I
10.1364/JOSAA.17.000342
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The set of paraxial optical systems is the manifold of the group of symplectic matrices. The structure of this group is nontrivial: It is not simply connected and is not of an exponential type. Our analysis clarifies the origin of the metaplectic phase and the inherent limitations for optical map fractionalization. We describe, for the first time to our knowledge, an image girator and a cross girator whose geometric and wave implementations are of interest. (C) 2000 Optical Society of America [S0740-3232(00)00102-2] OCIS codes: 080.2730, 000.3870.
引用
收藏
页码:342 / 355
页数:14
相关论文
共 56 条
[41]   QUANTUM-NOISE MATRIX FOR MULTIMODE SYSTEMS - U(N) INVARIANCE, SQUEEZING, AND NORMAL FORMS [J].
SIMON, R ;
MUKUNDA, N ;
DUTTA, B .
PHYSICAL REVIEW A, 1994, 49 (03) :1567-1583
[42]   HAMILTON THEORY OF TURNS GENERALIZED TO SP(2,R) [J].
SIMON, R ;
MUKUNDA, N ;
SUDARSHAN, ECG .
PHYSICAL REVIEW LETTERS, 1989, 62 (12) :1331-1334
[43]   IWASAWA DECOMPOSITION FOR SU(1,1) AND THE GUOY EFFECT FOR SQUEEZED STATES [J].
SIMON, R ;
MUKUNDA, N .
OPTICS COMMUNICATIONS, 1993, 95 (1-3) :39-45
[44]   THE THEORY OF SCREWS - A NEW GEOMETRIC REPRESENTATION FOR THE GROUP SU(1,1) [J].
SIMON, R ;
MUKUNDA, N ;
SUDARSHAN, ECG .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (05) :1000-1006
[45]   HAMILTON THEORY OF TURNS AND A NEW GEOMETRICAL REPRESENTATION FOR POLARIZATION OPTICS [J].
SIMON, R ;
MUKUNDA, N ;
SUDARSHAN, ECG .
PRAMANA, 1989, 32 (06) :769-792
[46]   MINIMAL 3-COMPONENT SU(2) GADGET FOR POLARIZATION OPTICS [J].
SIMON, R ;
MUKUNDA, N .
PHYSICS LETTERS A, 1990, 143 (4-5) :165-169
[47]  
SUDARSHAN ECG, 1985, OPT ACTA, V32, P855, DOI 10.1080/713821807
[48]   COHERENT-MODE DECOMPOSITION OF GENERAL ANISOTROPIC GAUSSIAN SCHELL-MODEL BEAMS [J].
SUNDAR, K ;
MAKUNDA, N ;
SIMON, R .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (03) :560-569
[49]  
WEYL H, 1930, THEORY GROUPS QUANTU
[50]   On the quantum correction for thermodynamic equilibrium [J].
Wigner, E .
PHYSICAL REVIEW, 1932, 40 (05) :0749-0759