Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology

被引:35
作者
Haas, Beth L. [1 ]
Matson, Jyl S. [2 ]
DiRita, Victor J. [3 ]
Biteen, Julie S. [1 ]
机构
[1] Univ Michigan, Dept Chem, Ann Arbor, MI 48019 USA
[2] Univ Toledo, Dept Med Microbiol & Immunol, Toledo, OH 43606 USA
[3] Univ Michigan, Dept Microbiol & Immunol, Ann Arbor, MI 48019 USA
基金
美国国家卫生研究院;
关键词
single-molecule microscopy; super-resolution imaging; single-particle tracking; fluorescence; microbiology; live-cell imaging; NUCLEOID-ASSOCIATED PROTEIN; VIRULENCE GENE-EXPRESSION; FLUORESCENT PROTEIN; VIBRIO-CHOLERAE; LOCALIZATION MICROSCOPY; PARTICLE TRACKING; ESCHERICHIA-COLI; LIVING CELLS; CORRELATION SPECTROSCOPY; DIFFRACTION-LIMIT;
D O I
10.3390/molecules190812116
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane.
引用
收藏
页码:12116 / 12149
页数:34
相关论文
共 150 条
  • [1] Abbe E., 1873, Archiv f ur Mikroskopische Anatomie, V9, P413, DOI DOI 10.1007/BF02956173
  • [2] Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins
    Akrap, Nina
    Seidel, Thorsten
    Barisas, B. George
    [J]. ANALYTICAL BIOCHEMISTRY, 2010, 402 (01) : 105 - 106
  • [3] ANDERSON CM, 1992, J CELL SCI, V101, P415
  • [4] Artifacts of light
    不详
    [J]. NATURE METHODS, 2013, 10 (12) : 1135 - 1135
  • [5] [Anonymous], SINGLE MOL TECHNIQUE
  • [6] Nanoscale Organization of Mitochondrial Microcompartments Revealed by Combining Tracking and Localization Microscopy
    Appelhans, Timo
    Richter, Christian P.
    Wilkens, Verena
    Hess, Samuel T.
    Piehler, Jacob
    Busch, Karin B.
    [J]. NANO LETTERS, 2012, 12 (02) : 610 - 616
  • [7] Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral
    Baird, GS
    Zacharias, DA
    Tsien, RY
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) : 11984 - 11989
  • [8] FURTHER STUDIES ON THE GRAM STAIN
    BAKER, H
    BLOOM, WL
    [J]. JOURNAL OF BACTERIOLOGY, 1948, 56 (04) : 387 - 390
  • [9] Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells
    Bakshi, Somenath
    Siryaporn, Albert
    Goulian, Mark
    Weisshaar, James C.
    [J]. MOLECULAR MICROBIOLOGY, 2012, 85 (01) : 21 - 38
  • [10] Multicolor super-resolution imaging with photo-switchable fluorescent probes
    Bates, Mark
    Huang, Bo
    Dempsey, Graham T.
    Zhuang, Xiaowei
    [J]. SCIENCE, 2007, 317 (5845) : 1749 - 1753