New magnetic Barkhausen noise feature extraction for stress detection with slow feature analysis

被引:1
作者
Hang, Cheng [1 ,2 ]
Liu, Wenbo [1 ,2 ]
Chen, Wangcai [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Automat Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Key Lab Minist Ind & Informat Technol, Nondestruct Detect & Monitoring Technol High Spee, Xian, Shaanxi, Peoples R China
关键词
Barkhausen noise; feature extraction; stress detection; slow feature analysis; STEEL;
D O I
10.1784/insi.2019.61.7.395
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Magnetic Barkhausen noise (MBN) is used in the non-destructive evaluation (NDE) of ferromagnetic materials. MBN signals have been shown to be sensitive to the stress of ferromagnetic materials. However, traditional MBN features for stress detection have poor linearity and are inaccurate for quantitative estimation of material stress. Slow feature analysis (SFA) is an unsupervised learning method that extracts the slowly-varying feature from input signals, which represents the inherent characteristics of the input signals. Since MBN signals are sensitive to the stress of ferromagnetic materials, slow feature analysis of MBN signals can be more accurate for stress detection compared with traditional MBN features.
引用
收藏
页码:395 / +
页数:4
相关论文
共 9 条
  • [1] Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination
    Ding, Song
    Tian, GuiYun
    Dobmann, Gerd
    Wang, Ping
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 421 : 225 - 229
  • [2] New feature extraction for applied stress detection on ferromagnetic material using magnetic Barkhausen noise
    Ding, Song
    Tian, GuiYun
    Moorthy, V.
    Wang, Ping
    [J]. MEASUREMENT, 2015, 73 : 515 - 519
  • [3] Multivariate Slow Feature Analysis and Decorrelation Filtering for Blind Source Separation
    Ha Quang Minh
    Wiskott, Laurenz
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (07) : 2737 - 2750
  • [4] Hanyuan Zhang, 2015, IFAC - Papers Online, V48, P607, DOI 10.1016/j.ifacol.2015.09.593
  • [5] Kamal S, 2011, P 2011 IEEE OC C SPA, DOI [10.1109/oceans-spain.2011.6003620, DOI 10.1109/OCEANS-SPAIN.2011.6003620]
  • [6] Effect of prestraining on Barkhausen noise vs. stress relation
    Lindgren, M
    Lepistö, T
    [J]. NDT & E INTERNATIONAL, 2001, 34 (05) : 337 - 344
  • [7] Characterisation of ferritic stainless steel by Barkhausen techniques
    O'Sullivan, D
    Cotterell, M
    Tanner, DA
    Mészáros, I
    [J]. NDT & E INTERNATIONAL, 2004, 37 (06) : 489 - 496
  • [8] Quantitative prediction of residual stress and hardness in case-hardened steel based on the Barkhausen noise measurement
    Sorsa, Aki
    Leiviska, Kauko
    Santa-aho, Suvi
    Lepisto, Toivo
    [J]. NDT & E INTERNATIONAL, 2012, 46 : 100 - 106
  • [9] Slow feature analysis: Unsupervised learning of invariances
    Wiskott, L
    Sejnowski, TJ
    [J]. NEURAL COMPUTATION, 2002, 14 (04) : 715 - 770