Mendelian Randomization Analysis of Hemoglobin A1c as a Risk Factor for Coronary Artery Disease

被引:28
作者
Leong, Aaron [1 ,2 ,3 ,4 ]
Chen, Ji [5 ]
Wheeler, Eleanor [5 ]
Hivert, Marie-France [1 ,2 ]
Liu, Ching-Ti [6 ]
Merino, Jordi [1 ,2 ,3 ,4 ]
Dupuis, Josee [6 ]
Tai, E. Shyong [7 ]
Rotter, Jerome I. [8 ,9 ]
Florez, Jose C. [1 ,2 ,3 ,4 ]
Barroso, Ines [5 ]
Meigs, James B. [1 ,2 ,3 ,4 ]
机构
[1] Massachusetts Gen Hosp, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Broad Inst MIT & Harvard, Program Metab, Cambridge, MA 02142 USA
[4] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[5] Wellcome Sanger Inst, Wellcome Genome Campus, Cambridge, England
[6] Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA USA
[7] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Med, Singapore, Singapore
[8] Harbor UCLA Med Ctr, Inst Translat Genom & Populat Sci, Dept Pediat, Los Angeles Biomed Res Inst, Torrance, CA 90509 USA
[9] Harbor UCLA Med Ctr, Inst Translat Genom & Populat Sci, Dept Med, Los Angeles Biomed Res Inst, Torrance, CA 90509 USA
基金
欧盟地平线“2020”;
关键词
GENOME-WIDE ASSOCIATION; GLYCATED HEMOGLOBIN; HEART-DISEASE; IRON STATUS; VARIANTS; METAANALYSIS; INDEX; LOCI; BIAS;
D O I
10.2337/dc18-1712
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVE Observational studies show that higher hemoglobin A(1c) (A1C) predicts coronary artery disease (CAD). It remains unclear whether this association is driven entirely by glycemia. We used Mendelian randomization (MR) to test whether A1C is causally associated with CAD through glycemic and/or nonglycemic factors. RESEARCH DESIGN AND METHODS To examine the association of A1C with CAD, we selected 50 A1C-associated variants (log(10) Bayes factor >= 6) from an A1C genome-wide association study (GWAS; n = 159,940) and performed an inverse-variance weighted average of variant-specific causal estimates from CAD GWAS data (CARDIoGRAMplusC4D; 60,801 CAD case subjects/123,504 control subjects). We then replicated results in UK Biobank (18,915 CAD case subjects/455,971 control subjects) and meta-analyzed all results. Next, we conducted analyses using two subsets of variants, 16 variants associated with glycemic measures (fasting or 2-h glucose) and 20 variants associated with erythrocyte indices (e.g., hemoglobin [Hb]) but not glycemic measures. In additional MR analyses, we tested the association of Hb with A1C and CAD. RESULTS Genetically increased A1C was associated with higher CAD risk (odds ratio [OR] 1.61 [95% CI 1.40, 1.84] per %-unit, P = 6.9 x 10(-12)). Higher A1C was associated with increased CAD risk when using only glycemic variants (OR 2.23 [1.73, 2.89], P = 1.0 x 10(-9)) and when using only erythrocytic variants (OR 1.30 [1.08, 1.57], P = 0.006). Genetically decreased Hb, with concomitantly decreased mean corpuscular volume, was associated with higher A1C (0.30 [0.27, 0.33] %-unit, P = 2.9 x 10(-6)) per g/dL and higher CAD risk (OR 1.19 [1.04, 1.37], P = 0.02). CONCLUSIONS Genetic evidence supports a causal link between higher A1C and higher CAD risk. This relationship is driven not only by glycemic but also by erythrocytic, glycemia-independent factors.
引用
收藏
页码:1202 / 1208
页数:7
相关论文
共 37 条
  • [1] A Mendelian randomization study of the effect of type-2 diabetes on coronary heart disease
    Ahmad, Omar S.
    Morris, John A.
    Mujammami, Muhammad
    Forgetta, Vincenzo
    Leong, Aaron
    Li, Rui
    Turgeon, Maxime
    Greenwood, Celia M. T.
    Thanassoulis, George
    Meigs, James B.
    Sladek, Robert
    Richards, J. Brent
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [2] A global reference for human genetic variation
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Wang, Jun
    Wilson, Richard K.
    Boerwinkle, Eric
    Doddapaneni, Harsha
    Han, Yi
    Korchina, Viktoriya
    Kovar, Christie
    Lee, Sandra
    Muzny, Donna
    Reid, Jeffrey G.
    Zhu, Yiming
    Chang, Yuqi
    Feng, Qiang
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Lan, Tianming
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Liu, Shengmao
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Tang, Meifang
    Wang, Bo
    [J]. NATURE, 2015, 526 (7571) : 68 - +
  • [3] The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease
    Astle, William J.
    Elding, Heather
    Jiang, Tao
    Allen, Dave
    Ruklisa, Dace
    Mann, Alice L.
    Mead, Daniel
    Bouman, Heleen
    Riveros-Mckay, Fernando
    Kostadima, Myrto A.
    Lambourne, John J.
    Sivapalaratnam, Suthesh
    Downes, Kate
    Kundu, Kousik
    Bomba, Lorenzo
    Berentsen, Kim
    Bradley, John R.
    Daugherty, Louise C.
    Delaneau, Olivier
    Freson, Kathleen
    Garner, Stephen F.
    Grassi, Luigi
    Guerrero, Jose
    Haimel, Matthias
    Janssen-Megens, Eva M.
    Kaan, Anita
    Kamat, Mihir
    Kim, Bowon
    Mandoli, Amit
    Marchini, Jonathan
    Martens, Joost H. A.
    Meacham, Stuart
    Megy, Karyn
    O'Connell, Jared
    Petersen, Romina
    Sharifi, Nilofar
    Sheard, Simon M.
    Staley, James R.
    Tuna, Salih
    van der Ent, Martijn
    Walter, Klaudia
    Wang, Shuang-Yin
    Wheeler, Eleanor
    Wilder, Steven P.
    Iotchkova, Valentina
    Moore, Carmel
    Sambrook, Jennifer
    Stunnenberg, Hendrik G.
    Di Angelantonio, Emanuele
    Kaptoge, Stephen
    [J]. CELL, 2016, 167 (05) : 1415 - +
  • [4] Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator
    Bowden, Jack
    Smith, George Davey
    Haycock, Philip C.
    Burgess, Stephen
    [J]. GENETIC EPIDEMIOLOGY, 2016, 40 (04) : 304 - 314
  • [5] Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
    Bowden, Jack
    Smith, George Davey
    Burgess, Stephen
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) : 512 - 525
  • [6] Bry L, 2001, CLIN CHEM, V47, P153
  • [7] Bias due to participant overlap in two-sample Mendelian randomization
    Burgess, Stephen
    Davies, Neil M.
    Thompson, Simon G.
    [J]. GENETIC EPIDEMIOLOGY, 2016, 40 (07) : 597 - 608
  • [8] Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors
    Burgess, Stephen
    Scott, Robert A.
    Timpson, Nicholas J.
    Smith, George Davey
    Thompson, Simon G.
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2015, 30 (07) : 543 - 552
  • [9] Using Multivariable Mendelian Randomization to Disentangle the Causal Effects of Lipid Fractions
    Burgess, Stephen
    Freitag, Daniel F.
    Khan, Hassan
    Gorman, Donal N.
    Thompson, Simon G.
    [J]. PLOS ONE, 2014, 9 (10):
  • [10] Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits
    Chami, Nathalie
    Chen, Ming-Huei
    Slater, Andrew J.
    Eicher, John D.
    Evangelou, Evangelos
    Tajuddin, Salman M.
    Love-Gregory, Latisha
    Kacprowski, Tim
    Schick, Ursula M.
    Nomura, Akihiro
    Giri, Ayush
    Lessard, Samuel
    Brody, Jennifer A.
    Schurmann, Claudia
    Pankratz, Nathan
    Yanek, Lisa R.
    Manichaikul, Ani
    Pazoki, Raha
    Mihailov, Evelin
    Hill, W. David
    Raffield, Laura M.
    Burt, Amber
    Bartz, Traci M.
    Becker, Diane M.
    Becker, Lewis C.
    Boerwinkle, Eric
    Bork-Jensen, Jette
    Bottinger, Erwin P.
    O'Donoghue, Michelle L.
    Crosslin, David R.
    de Denus, Simon
    Dube, Marie-Pierre
    Elliott, Paul
    Engstrom, Gunnar
    Evans, Michele K.
    Floyd, James S.
    Fornage, Myriam
    Gao, He
    Greinacher, Andreas
    Gudnason, Vilmundur
    Hansen, Torben
    Harris, Tamara B.
    Hayward, Caroline
    Hernesniemi, Jussi
    Highland, Heather M.
    Hirschhorn, Joel N.
    Hofman, Albert
    Irvin, Marguerite R.
    Kahonen, Mika
    Lange, Ethan
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 99 (01) : 8 - 21