A generalized multi-point boundary value problem for second order ordinary differential equations

被引:165
作者
Gupta, CP [1 ]
机构
[1] Univ Nevada, Dept Math, Reno, NV 89557 USA
关键词
D O I
10.1016/S0096-3003(97)81653-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f: [0,1] x R-2 --> R be a function satisfying Caratheodory's conditions and e(t)is an element of L-1[0,1]. Let xi(i), tau(j) is an element of (0,1), a(i), b(j) is an element of R, i=1,2,..., m-2, j=1,2,..., n- 2, 0<xi(1)<xi(2)<...<xi(m-2)<1,0<tau(1)<tau(2) <...<tau(n-2)<1 be given. This paper is concerned with the problem of existence of a solution for the generalized multi-point boundary value problems x(")(t)=f(t,x(t),x(')(t))+e(t), 0<t<1, x(0)=(m-2)Sigma(i=1)a(i)x(xi(i)), x(1)=(n-2)Sigma(j=1)b(j)x(tau(j)), and x(")(t)=f(t,x(t), x(')(t))+e(t), 0<t<1, x(0)=(m-2)Sigma(i-1)a(i)x(xi(i)), x(')(1)=(n-2)Sigma(j=1)b(j)x(')(tau(j)). (C) Elsevier Science Inc., 1998.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 1969, SOV MATH DOKL
[2]  
Bitsadze A.V., 1985, SOV MATH DOKL, V31, P91
[3]  
BITSADZE AV, 1984, SOV MATH DOKL, V30, P8
[4]   SOLVABILITY OF AN M-POINT BOUNDARY-VALUE PROBLEM FOR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
GUPTA, CP ;
NTOUYAS, SK ;
TSAMATOS, PC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) :575-584
[5]   ON AN M-POINT BOUNDARY-VALUE PROBLEM FOR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
GUPTA, CP ;
NTOUYAS, SK ;
TSAMATOS, PC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (11) :1427-1436
[6]   A 2ND-ORDER M-POINT BOUNDARY-VALUE PROBLEM AT RESONANCE [J].
GUPTA, CP .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (10) :1483-1489
[7]  
GUPTA CP, 1995, RESULTS MATH, V28, P270, DOI DOI 10.1007/BF03322257
[8]  
GUPTA CP, EXISTENCE RESULTS MU
[9]  
GUPTA CP, 1995, INT J MATH MATH SCI, V18, P705
[10]  
Gupta CP, 1994, DIFF EQUATIONS DYNAM, V2, P289