A generalized multi-point boundary value problem for second order ordinary differential equations

被引:165
作者
Gupta, CP [1 ]
机构
[1] Univ Nevada, Dept Math, Reno, NV 89557 USA
关键词
D O I
10.1016/S0096-3003(97)81653-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f: [0,1] x R-2 --> R be a function satisfying Caratheodory's conditions and e(t)is an element of L-1[0,1]. Let xi(i), tau(j) is an element of (0,1), a(i), b(j) is an element of R, i=1,2,..., m-2, j=1,2,..., n- 2, 0<xi(1)<xi(2)<...<xi(m-2)<1,0<tau(1)<tau(2) <...<tau(n-2)<1 be given. This paper is concerned with the problem of existence of a solution for the generalized multi-point boundary value problems x(")(t)=f(t,x(t),x(')(t))+e(t), 0<t<1, x(0)=(m-2)Sigma(i=1)a(i)x(xi(i)), x(1)=(n-2)Sigma(j=1)b(j)x(tau(j)), and x(")(t)=f(t,x(t), x(')(t))+e(t), 0<t<1, x(0)=(m-2)Sigma(i-1)a(i)x(xi(i)), x(')(1)=(n-2)Sigma(j=1)b(j)x(')(tau(j)). (C) Elsevier Science Inc., 1998.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 13 条