Prediction of product yields using fusion model from Co-pyrolysis of biomass and coal

被引:14
|
作者
Song, Jinling [1 ]
Tang, Chuyang [1 ]
Yu, Shiyao [1 ]
Yang, Xinyu [1 ]
Yang, Lei [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Civil Engn, 185 Qianshan Rd, Anshan 114051, Liaoning, Peoples R China
关键词
Co-pyrolysis; Biomass; Coal; Fusion model; Learning weight; BIO-OIL;
D O I
10.1016/j.biortech.2022.127132
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study aimed to establish a self-corrective machine learning model base on co-pyrolysis data of biomass and coal. Proximate and ultimate analysis of raw materials were chosen as input parameters. Radial basis function (RBF), support vector machine (SVM), and random forest (RF) were used to build the base regression models for the fusion (FU) model. 96 sets of the experimental data were applied to train and test the base models. A learning weight were then determined by the predicted performance of base models. Based on the learning weight method, FU model spontaneously regulated and controlled the weight of base models to output the predicted result of co-pyrolysis products. The coefficient of determination (R2) was more than 0.99 and the root-meansquared error (RMSE) was lower than 0.88%. The results suggested that FU model was more accurately adequate to forecast the yields of co-pyrolysis products than any of the base models.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Co-pyrolysis of torrefied biomass and coal: Effect of pressure on synergistic reactions
    Gouws, Saartjie M.
    Carrier, Marion
    Bunt, John R.
    Neomagus, Hein W. J. P.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 161
  • [32] Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal
    Krerkkaiwan, Supachita
    Fushimi, Chihiro
    Tsutsumi, Atsushi
    Kuchonthara, Prapan
    FUEL PROCESSING TECHNOLOGY, 2013, 115 : 11 - 18
  • [33] A study on machine learning prediction of bio-oil yield from biomass and plastic Co-pyrolysis
    Zhao, Chenxi
    Xia, Qi
    Wang, Siyu
    Lu, Xueying
    Yue, Wenjing
    Chen, Aihui
    Chen, Juhui
    JOURNAL OF THE ENERGY INSTITUTE, 2025, 120
  • [34] Optimizing pyrolysis and Co-Pyrolysis of plastic and biomass using Artificial Intelligence
    Timilsina, Manish Sharma
    Chaudhary, Yuvraj
    Bhattarai, Prikshya
    Uprety, Bibek
    Khatiwada, Dilip
    ENERGY CONVERSION AND MANAGEMENT-X, 2024, 24
  • [35] Synergistic effect and product distribution of co-pyrolysis of coal and waste plastics
    Li Y.
    Zhong W.
    Zhou G.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2023, 53 (04): : 733 - 740
  • [36] Co-pyrolysis of oil shale and plastics: Influence of pyrolysis parameters on the product yields
    Aboulkas, A.
    Makayssi, T.
    Bilali, L.
    El Harfi, K.
    Nadifiyine, M.
    Benchanaa, M.
    FUEL PROCESSING TECHNOLOGY, 2012, 96 : 209 - 213
  • [37] Synergetic Effect and Product Characteristics of Coal and Salix psammophila Co-pyrolysis
    Gong, Juhui
    Shao, Tingting
    Wang, Kebing
    BIORESOURCES, 2018, 13 (02): : 2846 - 2860
  • [38] Effects of different types of inorganic potassium in biomass on volatile-char interactions for co-pyrolysis of coal and biomass
    He, Zi-Meng
    Cao, Jing-Pei
    Zhao, Xiao-Yan
    FUEL, 2024, 357
  • [39] Thermal behaviour of coal/biomass blends during co-pyrolysis
    Vuthaluru, HB
    FUEL PROCESSING TECHNOLOGY, 2004, 85 (2-3) : 141 - 155
  • [40] An investigation on the interaction between biomass and coal during their co-pyrolysis
    Berthold E.E.S.
    Shunli F.
    Xue Y.
    Wang Y.
    Xiong Z.
    Guo J.
    Hu S.
    Xiang J.
    Su S.
    Key Engineering Materials, 2019, 797 : 299 - 308