FLUX-LIMITED SOLUTIONS FOR QUASI-CONVEX HAMILTON-JACOBI EQUATIONS ON NETWORKS

被引:0
作者
Imbert, Cyril [1 ]
Monneau, Regis [2 ]
机构
[1] Ecole Natl Super Paris, Dept Math & Applicat, CNRS, UMR 8553, 45 Rue Ulm, F-75230 Paris 5, France
[2] Univ Paris Est, CERMICS, ENPC, 6-8 Ave Blaise Pascal, F-77455 Marne La Vallee 2, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2017年 / 50卷 / 02期
关键词
VISCOSITY SOLUTIONS; DISCONTINUOUS COEFFICIENTS; DIFFERENTIAL-GAMES; STRATIFIED DOMAINS; EIKONAL EQUATIONS; CONSERVATION-LAWS; STATE CONSTRAINTS; BELLMAN EQUATIONS; METRIC-SPACES; R-N;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Hamilton-Jacobi equations on networks in the case where Hamiltonians are quasi-convex with respect to the gradient variable and can be discontinuous with respect to the space variable at vertices. First, we prove that imposing a general vertex condition is equivalent to imposing a specific one which only depends on Hamiltonians and an additional free parameter, the flux limiter. Second, a general method for proving comparison principles is introduced. This method consists in constructing a vertex test function to be used in the doubling variable approach. With such a theory and such a method in hand, we present various applications, among which a very general existence and uniqueness result for quasi-convex Hamilton-Jacobi equations on networks.
引用
收藏
页码:357 / 448
页数:92
相关论文
共 43 条
[1]   HAMILTON-JACOBI EQUATIONS FOR OPTIMAL CONTROL ON JUNCTIONS AND NETWORKS [J].
Achdou, Yves ;
Oudet, Salome ;
Tchou, Nicoletta .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (03) :876-899
[2]   Hamilton-Jacobi Equations on Networks as Limits of Singularly Perturbed Problems in Optimal Control: Dimension Reduction [J].
Achdou, Yves ;
Tchou, Nicoletta .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (04) :652-693
[3]   Hamilton-Jacobi equations constrained on networks [J].
Achdou, Yves ;
Camilli, Fabio ;
Cutri, Alessandra ;
Tchou, Nicoletta .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03) :413-445
[4]  
Alvarez O, 1999, INDIANA U MATH J, V48, P993
[5]   On a class of first order Hamilton-Jacobi equations in metric spaces [J].
Ambrosio, Luigi ;
Feng, Jin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) :2194-2245
[6]   Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks' medium [J].
Andreianov, Boris ;
Cances, Clement .
COMPUTATIONAL GEOSCIENCES, 2013, 17 (03) :551-572
[7]   A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux [J].
Andreianov, Boris ;
Hvistendahl, Kenneth Karlsen ;
Risebro, Nils Henrik .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 201 (01) :27-86
[8]   ON HOPF FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
EVANS, LC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (11) :1373-1381
[9]   A BELLMAN APPROACH FOR REGIONAL OPTIMAL CONTROL PROBLEMS IN RN [J].
Barles, G. ;
Briani, A. ;
Chasseigne, E. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (03) :1712-1744
[10]   A BELLMAN APPROACH FOR TWO-DOMAINS OPTIMAL CONTROL PROBLEMS IN RN [J].
Barles, G. ;
Briani, A. ;
Chasseigne, E. .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (03) :710-739