Fractional order Orlicz-Sobolev spaces

被引:120
作者
Fernandez Bonder, Julian [1 ]
Salort, Ariel M. [1 ,2 ]
机构
[1] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pabellon 1,Ave Cantilo S-N, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Ciudad Univ,Pabellon 1,Ave Cantilo S-N, RA-1428 Buenos Aires, DF, Argentina
关键词
Fractional order Sobolev spaces; Orlicz-Sobolev spaces; g-Laplace operator; LEVY; EQUATIONS; BOUNDARY; PATTERNS; BOURGAIN; BREZIS;
D O I
10.1016/j.jfa.2019.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define the fractional order Orlicz-Sobolev spaces, and prove its convergence to the classical OrliczSobolev spaces when the fractional parameter s up arrow 1 in the spirit of the celebrated result of Bourgain-Brezis-Mironescu. We then deduce some consequences such as Gamma-convergence of the modulars and convergence of solutions for some fractional versions of the Delta(g) operator as the fractional parameter s up arrow 1. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:333 / 367
页数:35
相关论文
共 34 条
[31]  
Schoutens Wim, 2003, WILLEY SERIES PROBAB
[32]   Bourgain-Brezis-Mironescu formula for magnetic operators [J].
Squassina, Marco ;
Volzone, Bruno .
COMPTES RENDUS MATHEMATIQUE, 2016, 354 (08) :825-831
[33]  
Stein E., 1970, Singular Integrals and Differentiability Properties of Functions
[34]   MATHEMATICAL AND NUMERICAL ANALYSIS OF LINEAR PERIDYNAMIC MODELS WITH NONLOCAL BOUNDARY CONDITIONS [J].
Zhou, Kun ;
Du, Qiang .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) :1759-1780