3D scaffold fabrication by mask projection excimer laser stereolithography

被引:19
作者
Beke, Szabolcs [1 ]
Farkas, Balazs [1 ]
Romano, Ilaria [1 ]
Brandi, Fernando [1 ,2 ]
机构
[1] Ist Italiano Tecnol, Nanophys Dept, I-16163 Genoa, Italy
[2] CNR, Ist Nazl Ott, I-56124 Pisa, Italy
关键词
POLY(PROPYLENE FUMARATE); BONE; MICROFABRICATION; MICROSTRUCTURES; BIOMATERIALS; NETWORKS;
D O I
10.1364/OME.4.002032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The production of 3D scaffolds with well-controlled architecture at the micrometer-scale is a fundamental issue for the advancement of tissue engineering towards applications in health care. Stereolithography is a highly versatile and accurate technique to fabricate 3D scaffolds with controlled architectures. Here, a scalable stereolithography method combining mask projection with excimer laser is reported. Its capability is showcased by a variety of mm-sized 3D biodegradable scaffolds patterned with a spatial resolution well-suited for tissue engineering applications. The presented method offers a concrete possibility to scale-up stereolithography-based production of 3D scaffolds to be used in regenerative medicine with potentially high-impact on health care. (C) 2014 Optical Society of America
引用
收藏
页码:2032 / 2041
页数:10
相关论文
共 48 条
[1]   Methacrylated glycol chitosan as a photopolymerizable biomaterial [J].
Amsden, Brian G. ;
Sukarto, Abby ;
Knight, Darryl K. ;
Shapka, Stephen N. .
BIOMACROMOLECULES, 2007, 8 (12) :3758-3766
[2]   Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings [J].
Beke, S. ;
Barenghi, R. ;
Farkas, B. ;
Romano, I. ;
Koroesi, L. ;
Scaglione, S. ;
Brandi, F. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 44 :38-43
[3]   Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm [J].
Beke, S. ;
Anjum, F. ;
Ceseracciu, L. ;
Romano, I. ;
Athanassiou, A. ;
Diaspro, A. ;
Brandi, F. .
LASER PHYSICS, 2013, 23 (03)
[4]   Titanate nanotube coatings on biodegradable photopolymer scaffolds [J].
Beke, S. ;
Koroesi, L. ;
Scarpellini, A. ;
Anjum, F. ;
Brandi, F. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (04) :2460-2463
[5]   Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds [J].
Beke, S. ;
Anjum, F. ;
Tsushima, H. ;
Ceseracciu, L. ;
Chieregatti, E. ;
Diaspro, A. ;
Athanassiou, A. ;
Brandi, F. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (76) :3017-3026
[6]   Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring [J].
Brandi, F. ;
Anjum, F. ;
Ceseracciu, L. ;
Barone, A. C. ;
Athanassiou, A. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (05)
[7]   Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds [J].
Cha, Chaenyung ;
Soman, Pranav ;
Zhu, Wei ;
Nikkhah, Mehdi ;
Camci-Unal, Gulden ;
Chen, Shaochen ;
Khademhosseini, Ali .
BIOMATERIALS SCIENCE, 2014, 2 (05) :703-709
[8]   Comparison of polymer scaffolds in rat spinal cord: A step toward quantitative assessment of combinatorial approaches to spinal cord repair [J].
Chen, Bingkun K. ;
Knight, Andrew M. ;
Madigan, Nicolas N. ;
Gross, LouAnn ;
Dadsetan, Mahrokh ;
Nesbitt, Jarred J. ;
Rooney, Gemma E. ;
Currier, Bradford L. ;
Yaszemski, Michael J. ;
Spinner, Robert J. ;
Windebank, Anthony J. .
BIOMATERIALS, 2011, 32 (32) :8077-8086
[9]   Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography [J].
Choi, Jae-Won ;
Wicker, Ryan ;
Lee, Seok-Hee ;
Choi, Kyung-Hyun ;
Ha, Chang-Sik ;
Chung, Ildoo .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (15-16) :5494-5503
[10]   Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds [J].
Choi, Jonghoon ;
Kim, Kyobum ;
Kim, Taeho ;
Liu, Guanshu ;
Bar-Shir, Amnon ;
Hyeon, Taeghwan ;
McMahon, Michael T. ;
Bulte, Jeff W. M. ;
Fisher, John P. ;
Gilad, Assaf A. .
JOURNAL OF CONTROLLED RELEASE, 2011, 156 (02) :239-245