Analytically stable Higgs bundles on some non-Kahler manifolds

被引:3
作者
Zhang, Chuanjing [1 ]
Zhang, Xi [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
基金
中国博士后科学基金;
关键词
Higgs bundles; Gauduchon manifold; Hermitian– Einstein equation; Non-compact; KOBAYASHI-HITCHIN CORRESPONDENCE; HERMITIAN-EINSTEIN METRICS; VECTOR-BUNDLES; STABILITY; CONNECTIONS;
D O I
10.1007/s10231-020-01055-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Higgs bundles on non-compact Hermitian manifolds. Under some assumptions for the underlying Hermitian manifolds which are not necessarily Kahler, we solve the Hermitian-Einstein equation on analytically stable Higgs bundles.
引用
收藏
页码:1683 / 1707
页数:25
相关论文
共 35 条
[21]  
Lübke M, 2006, MEM AM MATH SOC, V183, P1
[22]   STABILITY OF EINSTEIN-HERMITIAN VECTOR-BUNDLES [J].
LUBKE, M .
MANUSCRIPTA MATHEMATICA, 1983, 42 (2-3) :245-257
[23]  
Lubke M., 1995, KOBAYASHI HITCHIN CO, DOI [10.1142/2660, DOI 10.1142/2660]
[24]  
Mochizuki T, 2011, KOBAYASHI HITCHIN CO
[25]  
Mochizuki T., 2006, Kobayashi-Hitchin correspondence for tame harmonic bundles and an application
[26]   KOBAYASHI-HITCHIN CORRESPONDENCE FOR ANALYTICALLY STABLE BUNDLES [J].
Mochizuki, Takuro .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (01) :551-596
[27]   Kobayashi-Hitchin correspondence for tame harmonic bundles II [J].
Mochizuki, Takuro .
GEOMETRY & TOPOLOGY, 2009, 13 :359-455
[28]   STABLE AND UNITARY VECTOR BUNDLES ON A COMPACT RIEMANN SURFACE [J].
NARASIMHAN, MS ;
SESHADRI, CS .
ANNALS OF MATHEMATICS, 1965, 82 (03) :540-+
[29]   Semistable Higgs Bundles Over Compact Gauduchon Manifolds [J].
Nie, Yanci ;
Zhang, Xi .
JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) :627-642
[30]  
Riera IMI, 2000, J REINE ANGEW MATH, V528, P41