Analytically stable Higgs bundles on some non-Kahler manifolds

被引:3
作者
Zhang, Chuanjing [1 ]
Zhang, Xi [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
基金
中国博士后科学基金;
关键词
Higgs bundles; Gauduchon manifold; Hermitian– Einstein equation; Non-compact; KOBAYASHI-HITCHIN CORRESPONDENCE; HERMITIAN-EINSTEIN METRICS; VECTOR-BUNDLES; STABILITY; CONNECTIONS;
D O I
10.1007/s10231-020-01055-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Higgs bundles on non-compact Hermitian manifolds. Under some assumptions for the underlying Hermitian manifolds which are not necessarily Kahler, we solve the Hermitian-Einstein equation on analytically stable Higgs bundles.
引用
收藏
页码:1683 / 1707
页数:25
相关论文
共 35 条
[1]   Hitchin-Kobayashi correspondence, quivers, and vortices [J].
Alvarez-Cónsul, L ;
García-Prada, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) :1-33
[2]  
[Anonymous], 1996, J. Algebraic Geom.
[3]  
Bando S., 1994, STABLE SHEAVES EINST, P39
[4]   Parabolic index fibers on a complex surface [J].
Biquard, O .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 :302-316
[5]   THE VORTEX EQUATION ON AFFINE MANIFOLDS [J].
Biswas, Indranil ;
Loftin, John ;
Stemmler, Matthias .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (07) :3925-3941
[6]   Stable Higgs bundles on compact Gauduchon manifolds [J].
Biswas, Indranil .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (1-2) :71-74
[7]   VORTICES IN HOLOMORPHIC LINE BUNDLES OVER CLOSED KAHLER-MANIFOLDS [J].
BRADLOW, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) :1-17
[8]   HERMITIAN-EINSTEIN CONNECTIONS AND STABLE VECTOR-BUNDLES OVER COMPACT COMPLEX-SURFACES [J].
BUCHDAHL, NP .
MATHEMATISCHE ANNALEN, 1988, 280 (04) :625-648
[9]  
DeBartolomeis P, 1996, J DIFFER GEOM, V43, P231
[10]  
Donaldson S. K., 1992, Journal of Geometry and Physics, V8, P89, DOI 10.1016/0393-0440(92)90044-2