On the Fourier coefficients of meromorphic Jacobi forms

被引:6
作者
Olivetto, Rene [1 ]
机构
[1] Univ Cologne, Inst Math, D-50931 Cologne, Germany
关键词
Meromorphic Jacobi forms; almost harmonic Maass forms; canonical Fourier coefficients;
D O I
10.1142/S1793042114500419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we describe the automorphic properties of the Fourier coefficients of meromorphic Jacobi forms. Extending results of Dabholkar, Murthy, and Zagier, and Bringmann and Folsom, we prove that the canonical Fourier coefficients of a meromorphic Jacobi form phi (z; tau) are the holomorphic parts of some (vector- valued) almost harmonic Maass forms. We also give a precise description of their completions, which turn out to be uniquely determined by the Laurent coefficients of phi at each pole, as well as some well-known real analytic functions, that appear for instance in the completion of Appell-Lerch sums.
引用
收藏
页码:1519 / 1540
页数:22
相关论文
共 12 条
[1]  
[Anonymous], PREPRINT
[2]  
Bringmann K., J REINE ANG IN PRESS, DOI [10.1515/crelle-2012-0102, DOI 10.1515/CRELLE-2012-0102]
[3]  
BRINGMANN K, T AM MATH S IN PRESS
[4]  
Bringmann K, 2010, MATH RES LETT, V17, P589
[5]   Zagier-type dualities and lifting maps for harmonic Maass-Jacobi forms [J].
Bringmann, Kathrin ;
Richter, Olav K. .
ADVANCES IN MATHEMATICS, 2010, 225 (04) :2298-2315
[6]   Some characters of Kac and Wakimoto and nonholomorphic modular functions [J].
Bringmann, Kathrin ;
Ono, Ken .
MATHEMATISCHE ANNALEN, 2009, 345 (03) :547-558
[7]   On two geometric theta lifts [J].
Bruinier, JH ;
Funke, J .
DUKE MATHEMATICAL JOURNAL, 2004, 125 (01) :45-90
[8]  
Dabholkar A., 2011, ARXIV12084074
[9]  
Eichler M., 1985, The theory of Jacobi forms, V55
[10]   Integrable highest weight modules over affine superalgebras and Appell's function [J].
Kac, VG ;
Wakimoto, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 215 (03) :631-682