Liquid hydrogen;
TVS;
Full process;
CFD;
Zero gravity;
PRESSURE CONTROL;
THERMAL STRATIFICATION;
SYSTEM;
EVAPORATION;
D O I:
10.1016/j.ijhydene.2020.07.099
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Liquid hydrogen has been identified as a promising propellant for long-duration space missions, benefiting from its high specific impulse when paired with liquid oxygen. A full procedural computational fluid dynamic model was proposed for the jetting, mixing, throttling, and venting processes of thermodynamic venting systems (TVS) for the purpose of minimizing liquid hydrogen boil-off on orbit. In addition to the mixing and jetting components as well as the fluid domain inside the storage tank, the external fluid circulation loop and the throttling device were also coupled into the solver in the form of user-defined code, which enabled simulation of the continuous complete thermodynamic cycles. The evaporation/condensation intensity factors for the liquid-vapor phase change were confined in a smaller range than those used in other studies through theoretical analysis. To enhance the numerical stability, the well-known Lee model for liquid-vapor phase change was modified by introducing a smoothing function. Simulations with a variety of initial temperatures, mass flow-rates and vent ratios were conducted, which revealed that the condensation of superheated vapor contributes to the depressurization processes noticeably greater than the disturbance of the temperature stratification. Depressurization efficiency was introduced for evaluating the TVS performance during the jetting process. Significant performance enhancement was observed when the temperature difference between the liquid and the ullage before jetting was enlarged. The self-pressurization period was found lasting longer time under on-orbit condition than that on the ground, which is attributable to the floating of the bulk liquid and higher uniformity of the temperature distribution after the jetting process in the absence of gravity. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机构:
Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R ChinaSouthwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R China
Zhu, Hongjun
Han, Qinghua
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R ChinaSouthwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R China
Han, Qinghua
Wang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R ChinaSouthwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R China
Wang, Jian
He, Siyuan
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R ChinaSouthwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R China
He, Siyuan
Wang, Dong
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R ChinaSouthwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R China
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
Liu, Zhan
Li, Yanzhong
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
State Key Lab Technol Space Cryogen Propellants, Beijing 100028, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
Li, Yanzhong
Xie, Fushou
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
Xie, Fushou
Zhou, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China