Manipulator grabbing position detection with information fusion of color image and depth image using deep learning

被引:127
|
作者
Jiang, Du [1 ]
Li, Gongfa [1 ,3 ]
Sun, Ying [1 ]
Hu, Jiabing [1 ]
Yun, Juntong [2 ]
Liu, Ying [2 ]
机构
[1] Wuhan Univ Sci & Technol, Minist Educ, Key Lab Met Equipment & Control Technol, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Res Ctr Biomimet Robot & Intelligent Measurement, Wuhan 430081, Peoples R China
[3] Wuhan Univ Sci & Technol, Hubei Key Lab Mech Transmiss & Mfg Engn, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Manipulator; Grabbing position detection; Information fusion; Deep learning; GESTURE RECOGNITION; MULTIOBJECT; NETWORK;
D O I
10.1007/s12652-020-02843-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to ensure stable gripping performance of manipulator in a dynamic environment, a target object grab setting model based on the candidate region suggestion network is established with the multi-target object and the anchor frame generation measurement strategy overcoming external environmental interference factors such as mutual interference between objects and changes in illumination. In which, the success rate of model detection is improved by adding small-scale anchor values for small area grabbing target position detection. Further, 94.3% crawl detection success rate is achieved on the multi-target detection data sets using the information fusion of color image and depth image. The methods in this paper effectively improve the model's robustness and crawl success rate.
引用
收藏
页码:10809 / 10822
页数:14
相关论文
共 50 条
  • [31] Image steganography using deep learning based edge detection
    Biswarup Ray
    Souradeep Mukhopadhyay
    Sabbir Hossain
    Sudipta Kr Ghosal
    Ram Sarkar
    Multimedia Tools and Applications, 2021, 80 : 33475 - 33503
  • [32] Detection of Corrosion Progress using deep learning and image processing
    Ozaki, Shoto
    Nomura, Yasutoshi
    Yamazaki, Hiroshi
    Yamato, Yukihisa
    2022 JOINT 12TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 23RD INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS&ISIS), 2022,
  • [33] Fault point detection of IOT using multi-spectral image fusion based on deep learning
    Hou Rui
    Zhao Yunhao
    Tian Shiming
    Yang Yang
    Yang Wenhai
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 64
  • [34] A Low-Light Image Enhancement Algorithm Using the Hybrid Strategy of Deep Learning and Image Fusion
    Xu S.-P.
    Lin Z.-Y.
    Zhang G.-Z.
    Chen X.-G.
    Li F.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (01): : 72 - 76
  • [35] Robust multi-focus image fusion using focus property detection and deep image matting
    Wang, Changcheng
    Zang, Yongsheng
    Zhou, Dongming
    Mei, Jiatian
    Nie, Rencan
    Zhou, Lifen
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [36] Image steganography using deep learning based edge detection
    Ray, Biswarup
    Mukhopadhyay, Souradeep
    Hossain, Sabbir
    Ghosal, Sudipta Kr
    Sarkar, Ram
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (24) : 33475 - 33503
  • [37] Emotional image color transfer via deep learning
    Liu, Da
    Jiang, Yaxi
    Pei, Min
    Liu, Shiguang
    PATTERN RECOGNITION LETTERS, 2018, 110 : 16 - 22
  • [38] DEEP LEARNING BASED CLASSIFICATION USING SEMANTIC INFORMATION FOR POLSAR IMAGE
    Zhang, Lu
    Xie, Wen
    Zhao, Feng
    Liu, Hanqiang
    Duan, Yiping
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 196 - 199
  • [39] Unsupervised Infrared Image and Visible Image Fusion Algorithm Based on Deep Learning
    Chen Guoyang
    Wu Xiaojun
    Xu Tianyang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (04)
  • [40] Effects of Color Stain Normalization in Histopathology Image Retrieval using Deep Learning
    Rinaldi, Antonio M.
    Russo, Cristiano
    Tommasino, Cristian
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2022, : 26 - 33