Manipulator grabbing position detection with information fusion of color image and depth image using deep learning

被引:128
作者
Jiang, Du [1 ]
Li, Gongfa [1 ,3 ]
Sun, Ying [1 ]
Hu, Jiabing [1 ]
Yun, Juntong [2 ]
Liu, Ying [2 ]
机构
[1] Wuhan Univ Sci & Technol, Minist Educ, Key Lab Met Equipment & Control Technol, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Res Ctr Biomimet Robot & Intelligent Measurement, Wuhan 430081, Peoples R China
[3] Wuhan Univ Sci & Technol, Hubei Key Lab Mech Transmiss & Mfg Engn, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Manipulator; Grabbing position detection; Information fusion; Deep learning; GESTURE RECOGNITION; MULTIOBJECT; NETWORK;
D O I
10.1007/s12652-020-02843-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to ensure stable gripping performance of manipulator in a dynamic environment, a target object grab setting model based on the candidate region suggestion network is established with the multi-target object and the anchor frame generation measurement strategy overcoming external environmental interference factors such as mutual interference between objects and changes in illumination. In which, the success rate of model detection is improved by adding small-scale anchor values for small area grabbing target position detection. Further, 94.3% crawl detection success rate is achieved on the multi-target detection data sets using the information fusion of color image and depth image. The methods in this paper effectively improve the model's robustness and crawl success rate.
引用
收藏
页码:10809 / 10822
页数:14
相关论文
共 69 条
[21]   Contact-Reactive Grasping of Objects with Partial Shape Information [J].
Hsiao, Kaijen ;
Chitta, Sachin ;
Ciocarlie, Matei ;
Jones, E. Gil .
IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, :1228-1235
[22]  
HUANG L, 2020, IET IMAGE PROCESS
[23]   Improvement of Maximum Variance Weight Partitioning Particle Filter in Urban Computing and Intelligence [J].
Huang, Li ;
Fu, Qiaobo ;
Li, Gongfa ;
Luo, Bowen ;
Chen, Disi ;
Yu, Hui .
IEEE ACCESS, 2019, 7 :106527-106535
[24]  
Ji F, 2019, PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), P2290, DOI [10.1109/ITNEC.2019.8729451, 10.1109/itnec.2019.8729451]
[25]   Hand medical monitoring system based on machine learning and optimal EMG feature set [J].
Yu M. ;
Li G. ;
Jiang D. ;
Jiang G. ;
Tao B. ;
Chen D. .
Personal and Ubiquitous Computing, 2023, 27 (06) :1991-2007
[26]   Gesture recognition based on binocular vision [J].
Jiang, Du ;
Zheng, Zujia ;
Li, Gongfa ;
Sun, Ying ;
Kong, Jianyi ;
Jiang, Guozhang ;
Xiong, Hegen ;
Tao, Bo ;
Xu, Shuang ;
Yu, Hui ;
Liu, Honghai ;
Ju, Zhaojie .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 6) :13261-13271
[27]   Gesture recognition based on skeletonization algorithm and CNN with ASL database [J].
Jiang, Du ;
Li, Gongfa ;
Sun, Ying ;
Kong, Jianyi ;
Tao, Bo .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (21) :29953-29970
[28]  
Kumra S, 2017, IEEE INT C INT ROBOT, P769, DOI 10.1109/IROS.2017.8202237
[29]   Fast grasping of unknown objects using principal component analysis [J].
Lei, Qujiang ;
Chen, Guangming ;
Wisse, Martijn .
AIP ADVANCES, 2017, 7 (09)
[30]   Deep learning for detecting robotic grasps [J].
Lenz, Ian ;
Lee, Honglak ;
Saxena, Ashutosh .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (4-5) :705-724