REFINED FULLY EXPLICIT A POSTERIORI RESIDUAL-BASED ERROR CONTROL

被引:1
|
作者
Carstensen, C. [1 ,2 ]
Merdon, C. [3 ]
机构
[1] Humboldt Univ, D-10099 Berlin, Germany
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
[3] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
基金
新加坡国家研究基金会;
关键词
finite element method; adaptive finite element method; a posteriori error estimation; reliability; FINITE-ELEMENT METHODS; ESTIMATOR; FEM;
D O I
10.1137/120896517
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The explicit residual-based a posteriori error estimator for elliptic partial differential equations is reliable up to the multiplication of some generic constant which needs to be involved for full error control. The present mathematical literature takes this constant from the stability and approximation properties of Clement-type quasi-interpolation operators and so results in an overestimation of the error which is bigger than for implicit and more expensive a posterori error estimators. This paper propagates a paradigm shift to start with an equilibration error estimator technique followed by its efficiency analysis. The outcome is a refined residual-based a posteriori error estimate with explicit constants which leads to slightly sharper error control than the work of Veeser and Verfurth in 2009. A first application to guaranteed explicit error estimation for two-dimensional nonconforming and a generalization to higher-order finite element methods conclude the paper.
引用
收藏
页码:1709 / 1728
页数:20
相关论文
共 50 条
  • [1] On a residual-based a posteriori error estimator for the total error
    Papez, Jan
    Strakos, Zdenek
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1164 - 1184
  • [2] Residual-based a posteriori error estimators for algebraic stabilizations
    Jha, Abhinav
    APPLIED MATHEMATICS LETTERS, 2024, 157
  • [3] On residual-based a posteriori error estimation in hp-FEM
    J.M. Melenk
    B.I. Wohlmuth
    Advances in Computational Mathematics, 2001, 15 : 311 - 331
  • [4] Residual-based a posteriori error estimation for stochastic magnetostatic problems
    Mac, D. H.
    Tang, Z.
    Clenet, S.
    Creuse, E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 289 : 51 - 67
  • [5] On residual-based a posteriori error estimation in hp-FEM
    Melenk, JM
    Wohlmuth, BI
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 311 - 331
  • [6] Investigation of an explicit, residual-based, a posteriori error indicator for the adaptive finite element analysis of waveguide structures
    Botha, MM
    Davidson, DB
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2006, 21 (01): : 63 - 71
  • [7] Residual-based a posteriori error estimate for hypersingular equation on surfaces
    Carsten Carstensen
    M. Maischak
    D Praetorius
    E.P. Stephan
    Numerische Mathematik, 2004, 97 : 397 - 425
  • [8] Residual-Based a Posteriori Error Estimation for Immersed Finite Element Methods
    He, Cuiyu
    Zhang, Xu
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 2051 - 2079
  • [9] Residual-Based a Posteriori Error Estimation for Immersed Finite Element Methods
    Cuiyu He
    Xu Zhang
    Journal of Scientific Computing, 2019, 81 : 2051 - 2079
  • [10] Residual-based a posteriori error estimation for the Maxwell's eigenvalue problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 1710 - 1732