Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

被引:14
作者
Qi, Yangyang [1 ]
Wang, Zhen [1 ]
Zhang, Mingliang [1 ]
Wang, Xiaodong [1 ]
Ji, An [1 ]
Yang, Fuhua [1 ]
机构
[1] Chinese Acad Sci, Inst Semiconduct, Engn Res Ctr Semicond Integrated Technol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
FIELD-EMISSION; PERFORMANCE; FABRICATION; TRANSISTORS; ARRAYS;
D O I
10.1063/1.4866578
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process. (C) 2014 Author(s).
引用
收藏
页数:6
相关论文
共 23 条
[1]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[2]   Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature [J].
Chen, Chia-Yun ;
Wu, Chi-Sheng ;
Chou, Chia-Jen ;
Yen, Ta-Jen .
ADVANCED MATERIALS, 2008, 20 (20) :3811-+
[3]   Silicon nanowire devices [J].
Chung, SW ;
Yu, JY ;
Heath, JR .
APPLIED PHYSICS LETTERS, 2000, 76 (15) :2068-2070
[4]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[5]   Doping and electrical transport in silicon nanowires [J].
Cui, Y ;
Duan, XF ;
Hu, JT ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5213-5216
[6]   Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires [J].
Curtin, Benjamin M. ;
Codecido, Emilio A. ;
Kraemer, Stephan ;
Bowers, John E. .
NANO LETTERS, 2013, 13 (11) :5503-5508
[7]   Avalanche breakdown in surface modified silicon nanowires [J].
Elfstrom, Niklas ;
Linnros, Jan .
APPLIED PHYSICS LETTERS, 2007, 91 (10)
[8]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[9]   Metal-Assisted Chemical Etching of Silicon: A Review [J].
Huang, Zhipeng ;
Geyer, Nadine ;
Werner, Peter ;
de Boor, Johannes ;
Goesele, Ulrich .
ADVANCED MATERIALS, 2011, 23 (02) :285-308
[10]   Fabrication of ion-implanted Si nanowire p-FETs [J].
Lee, Seung-Yong ;
Jang, Chan-Oh ;
Kim, Dong-Joo ;
Hyung, Jung-Hwan ;
Rogdakis, Konstantinos ;
Bano, Edwige ;
Zekentes, Konstantinos ;
Lee, Sang-Kwon .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (34) :13287-13291