On the computation of all eigenvalues for the eigenvalue complementarity problem

被引:23
作者
Fernandes, Luis M. [1 ,2 ]
Judice, Joaquim J. [2 ]
Sherali, Hanif D. [3 ]
Fukushima, Masao [4 ]
机构
[1] Inst Politecn Tomar, Tomar, Portugal
[2] Inst Telecomunicacoes, Coimbra, Portugal
[3] Virginia Tech, Grado Dept Ind & Syst Engn, Blacksburg, VA USA
[4] Nanzan Univ, Fac Informat Sci & Engn, Seto, Aichi 4890863, Japan
基金
美国国家科学基金会; 日本学术振兴会;
关键词
Eigenvalue problems; Complementarity problems; Nonlinear programming; Global optimization;
D O I
10.1007/s10898-014-0165-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a parametric algorithm is introduced for computing all eigenvalues for two Eigenvalue Complementarity Problems discussed in the literature. The algorithm searches a finite number of nested intervals in such a way that, in each iteration, either an eigenvalue is computed in or a certificate of nonexistence of an eigenvalue in is provided. A hybrid method that combines an enumerative method [1] and a semi-smooth algorithm [2] is discussed for dealing with the Eigenvalue Complementarity Problem over an interval . Computational experience is presented to illustrate the efficacy and efficiency of the proposed techniques.
引用
收藏
页码:307 / 326
页数:20
相关论文
共 20 条
[1]   A nonsmooth algorithm for cone-constrained eigenvalue problems [J].
Adly, Samir ;
Seeger, Alberto .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (02) :299-318
[2]  
[Anonymous], 2007, Finite-dimensional variational inequalities and complementarity problems
[3]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[4]  
Brás CP, 2012, PAC J OPTIM, V8, P197
[5]   Cone-constrained eigenvalue problems: theory and algorithms [J].
da Costa, A. Pinto ;
Seeger, A. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (01) :25-57
[6]   The directional instability problem in systems with frictional contacts [J].
da Costa, AP ;
Martins, JAC ;
Figueiredo, IN ;
Júdice, JJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (3-5) :357-384
[7]  
Fernandes L.M., 2013, TO APPEAR IN COMPUT
[8]   A DC programming approach for solving the symmetric Eigenvalue Complementarity Problem [J].
Hoai An Le Thi ;
Moeini, Mahdi ;
Tao Pham Dinh ;
Judice, Joaquim .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 51 (03) :1097-1117
[9]   The eigenvalue complementarity problem [J].
Judice, Joaquim J. ;
Sherali, Hanif D. ;
Ribeiro, Isabel M. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2007, 37 (02) :139-156
[10]   On the asymmetric eigenvalue complementarity problem [J].
Judice, Joaquim J. ;
Sherali, Hanif D. ;
Ribeiro, Isabel M. ;
Rosa, Silverio S. .
OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (4-5) :549-568