Do Images of Biskyrmions Show Type-II Bubbles?

被引:79
|
作者
Loudon, James C. [1 ]
Twitchett-Harrison, Alison C. [1 ]
Cortes-Ortuno, David [2 ]
Birch, Max T. [3 ]
Turnbull, Luke A. [3 ]
Stefancic, Ales [4 ]
Ogrin, Feodor Y. [5 ]
Burgos-Parra, Erick O. [5 ]
Bukin, Nicholas [5 ]
Laurenson, Angus [5 ]
Popescu, Horia [6 ]
Beg, Marijan [2 ,7 ]
Hovorka, Ondrej [2 ]
Fangohr, Hans [2 ,7 ]
Midgley, Paul A. [1 ]
Balakrishnan, Geetha [4 ]
Hatton, Peter D. [3 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[2] Univ Southampton, Fac Engn & Phys Sci, Southampton SO17 1BJ, Hants, England
[3] Univ Durham, Dept Phys, Durham DH1 3LE, England
[4] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[5] Univ Exeter, Sch Phys & Astron, Exeter EX4 4QL, Devon, England
[6] Synchrotron SOLEIL, BP 48, F-91192 Gif Sur Yvette, France
[7] European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
biskyrmions; Lorentz transmission electron microscopy; magnetic bubbles; skyrmions; X-ray holography; SKYRMIONS; LATTICE; MOTION; STATE; FILMS;
D O I
10.1002/adma.201806598
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The intense research effort investigating magnetic skyrmions and their applications for spintronics has yielded reports of more exotic objects including the biskyrmion, which consists of a bound pair of counter-rotating vortices of magnetization. Biskyrmions have been identified only from transmission electron microscopy images and have not been observed by other techniques, nor seen in simulations carried out under realistic conditions. Here, quantitative Lorentz transmission electron microscopy, X-ray holography, and micromagnetic simulations are combined to search for biskyrmions in MnNiGa, a material in which they have been reported. Only type-I and type-II magnetic bubbles are found and images purported to show biskyrmions can be explained as type-II bubbles viewed at an angle to their axes. It is not the magnetization but the magnetic flux density resulting from this object that forms the counter-rotating vortices.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Vortex Dynamics Equation in Type-II Superconductors in a Temperature Gradient
    Monroy, R. Vega
    Castillo, J. Sarmiento
    Torres, D. Puerta
    BRAZILIAN JOURNAL OF PHYSICS, 2010, 40 (04) : 443 - 449
  • [22] Magnetic properties of type-II superconductors with reduced phase stiffness
    Horvath, F.
    Hlubina, R.
    PHYSICAL REVIEW B, 2010, 81 (13)
  • [23] Anisotropic Magnus Force in Type-II Superconductors with Planar Defects
    Vega Monroy, Ricardo
    Cortes Gomez, Eliceo
    BRAZILIAN JOURNAL OF PHYSICS, 2015, 45 (01) : 54 - 58
  • [24] Channel flux-antiflux instability in type-II superconductors
    Dvash, E. E.
    Shapiro, B. Ya.
    Shapiro, I.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 485 : 1 - 5
  • [25] Global phase diagram of disordered type-II Weyl semimetals
    Wu, Yijia
    Liu, Haiwen
    Jiang, Hua
    Xie, X. C.
    PHYSICAL REVIEW B, 2017, 96 (02)
  • [26] Effect of the type-I to type-II Weyl semimetal topological transition on superconductivity
    Li, Dingping
    Rosenstein, Baruch
    Shapiro, B. Ya.
    Shapiro, I.
    PHYSICAL REVIEW B, 2017, 95 (09)
  • [27] Effect of normal current corrections on the vortex dynamics in type-II superconductors
    Lipavsky, P.
    Elmurodov, A.
    Lin, Pei-Jen
    Matlock, P.
    Berdiyorov, G. R.
    PHYSICAL REVIEW B, 2012, 86 (14):
  • [28] Effect of transport current on the pinning induced magnetostriction of type-II superconductors
    Inanir, F.
    Erdogan, M.
    ACTA PHYSICA POLONICA A, 2008, 113 (02) : 741 - 752
  • [29] Topological solitons and bulk polarization switch in collinear type-II multiferroics
    Cabra, D. C.
    Dobry, A. O.
    Gazza, C. J.
    Rossini, G. L.
    PHYSICAL REVIEW B, 2021, 103 (14)
  • [30] Type-II Dirac semimetals in the YPd2Sn class
    Guo, Peng-Jie
    Yang, Huan-Cheng
    Liu, Kai
    Lu, Zhong-Yi
    PHYSICAL REVIEW B, 2017, 95 (15)