Do Images of Biskyrmions Show Type-II Bubbles?

被引:79
|
作者
Loudon, James C. [1 ]
Twitchett-Harrison, Alison C. [1 ]
Cortes-Ortuno, David [2 ]
Birch, Max T. [3 ]
Turnbull, Luke A. [3 ]
Stefancic, Ales [4 ]
Ogrin, Feodor Y. [5 ]
Burgos-Parra, Erick O. [5 ]
Bukin, Nicholas [5 ]
Laurenson, Angus [5 ]
Popescu, Horia [6 ]
Beg, Marijan [2 ,7 ]
Hovorka, Ondrej [2 ]
Fangohr, Hans [2 ,7 ]
Midgley, Paul A. [1 ]
Balakrishnan, Geetha [4 ]
Hatton, Peter D. [3 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[2] Univ Southampton, Fac Engn & Phys Sci, Southampton SO17 1BJ, Hants, England
[3] Univ Durham, Dept Phys, Durham DH1 3LE, England
[4] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[5] Univ Exeter, Sch Phys & Astron, Exeter EX4 4QL, Devon, England
[6] Synchrotron SOLEIL, BP 48, F-91192 Gif Sur Yvette, France
[7] European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
biskyrmions; Lorentz transmission electron microscopy; magnetic bubbles; skyrmions; X-ray holography; SKYRMIONS; LATTICE; MOTION; STATE; FILMS;
D O I
10.1002/adma.201806598
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The intense research effort investigating magnetic skyrmions and their applications for spintronics has yielded reports of more exotic objects including the biskyrmion, which consists of a bound pair of counter-rotating vortices of magnetization. Biskyrmions have been identified only from transmission electron microscopy images and have not been observed by other techniques, nor seen in simulations carried out under realistic conditions. Here, quantitative Lorentz transmission electron microscopy, X-ray holography, and micromagnetic simulations are combined to search for biskyrmions in MnNiGa, a material in which they have been reported. Only type-I and type-II magnetic bubbles are found and images purported to show biskyrmions can be explained as type-II bubbles viewed at an angle to their axes. It is not the magnetization but the magnetic flux density resulting from this object that forms the counter-rotating vortices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Type-II topological metals
    Li, Si
    Yu, Zhi-Ming
    Yao, Yugui
    Yang, Shengyuan A.
    FRONTIERS OF PHYSICS, 2020, 15 (04)
  • [2] Hessian characterization of the pinning landscape in a type-II superconductor
    Willa, R.
    Geshkenbein, V. B.
    Blatter, G.
    PHYSICAL REVIEW B, 2022, 105 (14)
  • [3] Electromagnetic radiation from vortex flow in type-II superconductors
    Bulaevskii, L. N.
    Chudnovsky, E. M.
    PHYSICAL REVIEW LETTERS, 2006, 97 (19)
  • [4] Oscillations of a single Abrikosov vortex in hard type-II superconductors
    Rusakov, V. F.
    Chabanenko, V. V.
    Nabialek, A.
    Chumak, O. M.
    LOW TEMPERATURE PHYSICS, 2017, 43 (06) : 670 - 682
  • [5] Strong pinning theory of thermal vortex creep in type-II superconductors
    Buchacek, M.
    Willa, R.
    Geshkenbein, V. B.
    Blatter, G.
    PHYSICAL REVIEW B, 2019, 100 (01)
  • [6] Vortex dynamics in type-II superconductors under strong pinning conditions
    Thomann, A. U.
    Geshkenbein, V. B.
    Blatter, G.
    PHYSICAL REVIEW B, 2017, 96 (14)
  • [7] Dynamical Aspects of Strong Pinning of Magnetic Vortices in Type-II Superconductors
    Thomann, A. U.
    Geshkenbein, V. B.
    Blatter, G.
    PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [8] Photoelectrolysis Using Type-II Semiconductor Heterojunctions
    Harrison, S.
    Hayne, M.
    SCIENTIFIC REPORTS, 2017, 7
  • [9] FLUX EXCHANGE IN INHOMOGENEOUS TYPE-II SUPERCONDUCTORS
    Ma, Rongchao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (09):
  • [10] Magnetic mapping of defects in type-II superconductors
    Mironov, S.
    Devizorova, Zh.
    Clergerie, A.
    Buzdin, A.
    APPLIED PHYSICS LETTERS, 2016, 108 (21)