The effect of boundaries on the asymptotic wavenumber of spiral wave solutions of the complex Ginzburg-Landau equation

被引:3
|
作者
Aguareles, M. [1 ]
机构
[1] Univ Girona, Dept Informat & Matemat Aplicada, Girona 17071, Spain
关键词
Spiral waves; Complex Ginzburg-Landau; Asymptotic wavenumber; CORE;
D O I
10.1016/j.physd.2014.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an oscillatory medium whose dynamics are modeled by the complex Ginzburg-Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex Ginzburg-Landau equation in a disk of radius d with homogeneous Neumann boundary conditions. It is well-known that such solutions exist for small enough values of the twist parameter q and large enough values of d. We investigate the effect of boundaries on the rotational frequency of the spirals, which is an unknown of the problem uniquely determined by the parameters d and q. We show that there is a threshold in the parameter space where the effect of the boundary on the rotational frequency switches from being algebraic to exponentially weak. We use the method of matched asymptotic expansions to obtain explicit expressions for the asymptotic wavenumber as a function of the twist parameter and the domain size for small values of q. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 15 条
  • [1] Motion of spiral waves in the complex Ginzburg-Landau equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (07) : 348 - 365
  • [2] Spiral wave dynamics in the complex Ginzburg-Landau equation with broken chiral symmetry
    Nam, K
    Ott, E
    Gabbay, M
    Guzdar, PN
    PHYSICA D, 1998, 118 (1-2): : 69 - 83
  • [3] Resonant Drift of Spiral Waves in the Complex Ginzburg-Landau Equation
    Irina V. Biktasheva
    Yury E. Elkin
    Vadim N. Biktashev
    Journal of Biological Physics, 1999, 25 : 115 - 127
  • [4] The dynamics of scroll wave filaments in the complex Ginzburg-Landau equation
    Gabbay, M
    Ott, E
    Guzdar, PN
    PHYSICA D, 1998, 118 (3-4): : 371 - 395
  • [5] Resonant drift of spiral waves in the complex Ginzburg-Landau equation
    Biktasheva, IV
    Elkin, YE
    Biktashev, VN
    JOURNAL OF BIOLOGICAL PHYSICS, 1999, 25 (2-3) : 115 - 128
  • [6] Dynamics of spiral waves in the complex Ginzburg-Landau equation in bounded domains
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 414 (414)
  • [7] Phase dynamics in the complex Ginzburg-Landau equation
    Melbourne, I
    Schneider, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 22 - 46
  • [8] Global attractors for the complex Ginzburg-Landau equation
    Li, Fang
    You, Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) : 14 - 24
  • [9] Circular-interface selected wave patterns in the complex Ginzburg-Landau equation
    Li, Bing-Wei
    Gao, Xiang
    Deng, Zhi-Gang
    Ying, He-Ping
    Zhang, Hong
    EPL, 2010, 91 (03)
  • [10] Some stability results for the complex Ginzburg-Landau equation
    Correia, Simao
    Figueira, Mario
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (08)