Objective Prior for the Number of Degrees of Freedom of a t Distribution

被引:28
作者
Villa, Cristiano [1 ]
Walker, Stephen G. [2 ,3 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NZ, Kent, England
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[3] Univ Texas Austin, Div Stat & Sci Computat, Austin, TX 78712 USA
来源
BAYESIAN ANALYSIS | 2014年 / 9卷 / 01期
关键词
Objective prior; t distribution; Kullback-Leibler divergence; Linear regression; Self-information loss function; Robust analysis; Financial return; BAYESIAN-ANALYSIS; REGRESSION; MODELS;
D O I
10.1214/13-BA854
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct an objective prior for the degrees of freedom of a t distribution, when the parameter is taken to be discrete. This parameter is typically problematic to estimate and a problem in objective Bayesian inference since improper priors lead to improper posteriors, whilst proper priors may dominate the data likelihood. We find an objective criterion, based on loss functions, instead of trying to define objective probabilities directly. Truncating the prior on the degrees of freedom is necessary, as the t distribution, above a certain number of degrees of freedom, becomes the normal distribution. The defined prior is tested in simulation scenarios, including linear regression with t-distributed errors, and on real data: the daily returns of the closing Dow Jones index over a period of 98 days.
引用
收藏
页码:197 / 220
页数:24
相关论文
共 22 条
[1]  
[Anonymous], 1996, BAYESIAN STAT
[2]  
ANSCOMBE FJ, 1967, J ROY STAT SOC B, V29, P1
[3]  
Berger J.O., 1985, Statistical decision theory and Bayesian analysis, V2nd
[4]   Objective Priors for Discrete Parameter Spaces [J].
Berger, James O. ;
Bernardo, Jose M. ;
Sun, Dongchu .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (498) :636-648
[5]   LIMITING BEHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN MODEL IS INCORRECT [J].
BERK, RH .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (01) :51-&
[6]  
BLYTH S, 1994, BIOMETRIKA, V81, P579
[7]   Bayesian Priors from Loss Matching [J].
Brown, Philip J. ;
Walker, Stephen G. .
INTERNATIONAL STATISTICAL REVIEW, 2012, 80 (01) :60-82
[8]   ERRORS IN NORMAL APPROXIMATIONS TO THE TERT,TAU, AND SIMILAR TYPES OF DISTRIBUTION [J].
CHU, JT .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (03) :780-789
[9]  
Fabozzi FJ., 2010, PROBABILITY STAT FIN
[10]   Multivariate student-t regression models:: Pitfalls and inference [J].
Fernandez, C ;
Steel, MFJ .
BIOMETRIKA, 1999, 86 (01) :153-167