A novel measure of identifying influential nodes in complex networks

被引:51
|
作者
Lv, Zhiwei [1 ]
Zhao, Nan [1 ]
Xiong, Fei [2 ]
Chen, Nan [1 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian, Shaanxi, Peoples R China
[2] Beijing Jiaotong Univ, Key Lab Commun & Informat Syst, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex networks; Average shortest path; Influential nodes; SIR model; SPREADERS; RANKING; CENTRALITY; SYSTEMS;
D O I
10.1016/j.physa.2019.01.136
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Research about ranking nodes according to their spreading ability in complex networks is a fundamental and essential issue. As one of the vital centrality measures, the degree centrality is very simple. However, it is difficult to distinguish the importance of nodes with the same degree. Global metrics such as betweenness centrality and closeness centrality can identify influential nodes more accurately, but there remains some disadvantages and limitations. In this paper, we propose an average shortest path centrality to rank the spreaders, in which the relative change of the average shortest path of the whole network is taken into account. For evaluating the performance, we adapt Susceptible-Infected-Recovered model to simulate the epidemic spreading process on four different real networks. The experimental and simulated results show that our scheme owns better performance compared with degree, betweenness and closeness centrality. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:488 / 497
页数:10
相关论文
共 50 条
  • [1] A novel semi local measure of identifying influential nodes in complex networks
    Wang, Xiaojie
    Slamu, Wushour
    Guo, Wenqiang
    Wang, Sixiu
    Ren, Yan
    CHAOS SOLITONS & FRACTALS, 2022, 158
  • [2] A novel voting measure for identifying influential nodes in complex networks based on local structure
    Li, Haoyang
    Wang, Xing
    Chen, You
    Cheng, Siyi
    Lu, Dejiang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [3] Identifying influential nodes in complex networks
    Chen, Duanbing
    Lu, Linyuan
    Shang, Ming-Sheng
    Zhang, Yi-Cheng
    Zhou, Tao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1777 - 1787
  • [4] BGN: Identifying Influential Nodes in Complex Networks via Backward Generating Networks
    Lin, Zhiwei
    Ye, Fanghua
    Chen, Chuan
    Zheng, Zibin
    IEEE ACCESS, 2018, 6 : 59949 - 59962
  • [5] Identifying influential nodes in complex networks via Transformer
    Chen, Leiyang
    Xi, Ying
    Dong, Liang
    Zhao, Manjun
    Li, Chenliang
    Liu, Xiao
    Cui, Xiaohui
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (05)
  • [6] A novel method for identifying influential nodes in complex networks based on multiple attributes
    Liu, Dong
    Nie, Hao
    Zhang, Baowen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (28):
  • [7] Identifying Influential Nodes in Complex Networks Based on Local Neighbor Contribution
    Dai, Jinying
    Wang, Bin
    Sheng, Jinfang
    Sun, Zejun
    Khawaja, Faiza Riaz
    Ullah, Aman
    Dejene, Dawit Aklilu
    Duan, Guihua
    IEEE ACCESS, 2019, 7 : 131719 - 131731
  • [8] Identifying Influential Nodes in Complex Networks Based on Neighborhood Entropy Centrality
    Qiu, Liqing
    Zhang, Jianyi
    Tian, Xiangbo
    Zhang, Shuang
    COMPUTER JOURNAL, 2021, 64 (10) : 1465 - 1476
  • [9] Influential Nodes Identification in Complex Networks via Information Entropy
    Guo, Chungu
    Yang, Liangwei
    Chen, Xiao
    Chen, Duanbing
    Gao, Hui
    Ma, Jing
    ENTROPY, 2020, 22 (02)
  • [10] A new evidential methodology of identifying influential nodes in complex networks
    Bian, Tian
    Deng, Yong
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 101 - 110