Biofunctionalized Prussian Blue Nanoparticles for Multimodal Molecular Imaging Applications

被引:15
|
作者
Vojtech, Jennifer M. [1 ,2 ]
Cano-Mejia, Juliana [1 ,2 ]
Dumont, Matthieu F. [1 ]
Sze, Raymond W. [1 ,3 ]
Fernandes, Rohan [1 ,3 ,4 ]
机构
[1] Childrens Natl Med Ctr, Sheikh Zayed Inst Pediat Surg Innovat, Rockville, MD 20850 USA
[2] Univ Maryland, Fischell Dept Bioengn, College Pk, MD USA
[3] George Washington Univ, Dept Radiol, Washington, DC 20052 USA
[4] George Washington Univ, Dept Pediat, Washington, DC 20052 USA
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2015年 / 98期
关键词
Bioengineering; Issue; 98; Prussian blue; nanoparticles; multimodal imaging; molecular imaging; fluorescence; magnetic resonance imaging; gadolinium; manganese; CONTRAST AGENTS;
D O I
10.3791/52621
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multimodal, molecular imaging allows the visualization of biological processes at cellular, subcellular, and molecular-level resolutions using multiple, complementary imaging techniques. These imaging agents facilitate the real-time assessment of pathways and mechanisms in vivo, which enhance both diagnostic and therapeutic efficacy. This article presents the protocol for the synthesis of biofunctionalized Prussian blue nanoparticles (PB NPs) - a novel class of agents for use in multimodal, molecular imaging applications. The imaging modalities incorporated in the nanoparticles, fluorescence imaging and magnetic resonance imaging (MRI), have complementary features. The PB NPs possess a core-shell design where gadolinium and manganese ions incorporated within the interstitial spaces of the PB lattice generate MRI contrast, both in T-1 and T-2-weighted sequences. The PB NPs are coated with fluorescent avidin using electrostatic self-assembly, which enables fluorescence imaging. The avidin-coated nanoparticles are modified with biotinylated ligands that confer molecular targeting capabilities to the nanoparticles. The stability and toxicity of the nanoparticles are measured, as well as their MRI relaxivities. The multimodal, molecular imaging capabilities of these biofunctionalized PB NPs are then demonstrated by using them for fluorescence imaging and molecular MRI in vitro.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Fashioning Prussian Blue Nanoparticles by Adsorption of Luminophores: Synthesis, Properties, and in Vitro Imaging
    Mamontova, Ekaterina
    Daurat, Morgane
    Long, Jerome
    Godefroy, Anastasia
    Salles, Fabrice
    Guari, Yannick
    Gary-Bobo, Magali
    Larionova, Joulia
    INORGANIC CHEMISTRY, 2020, 59 (07) : 4567 - 4575
  • [22] Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors
    Dumont, Matthieu F.
    Yadavilli, Sridevi
    Sze, Raymond W.
    Nazarian, Javad
    Fernandes, Rohan
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2014, 9 : 2581 - 2595
  • [23] Patent Blue Derivatized Dendronized Iron Oxide Nanoparticles for Multimodal Imaging
    Lai Truong-Phuoc
    Kueny-Stotz, Marie
    Jouhannaud, Julien
    Garofalo, Antonio
    Ble, Francois-Xavier
    Simon, Herve
    Tellier, Franklin
    Poulet, Patrick
    Chirco, Piero
    Begin-Colin, Sylvie
    Pourroy, Genevieve
    Felder-Flesch, Delphine
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2015, (27) : 4565 - 4571
  • [24] Immunoactive Prussian blue nanoconsructs containing gadolinium for molecular imaging of eosinophilic esophagitis
    Dumont, Matthieu F.
    Evangelou, Iordanis E.
    Yoon, Pryscilla S.
    Conklin, Laurie S.
    Sze, Raymond W.
    Fernandes, Rohan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [25] Biofunctionalized, Phosphonate-Grafted, Ultrasmall Iron Oxide Nanoparticles for Combined Targeted Cancer Therapy and Multimodal Imaging
    Das, Monasmita
    Mishra, Debasish
    Dhak, Prasanta
    Gupta, Satyajit
    Maiti, Tapas Kumar
    Basak, Amit
    Pramanik, Panchanan
    SMALL, 2009, 5 (24) : 2883 - 2893
  • [26] Imaging Single Prussian Blue Nanoparticles with Extraordinary Low-Spin Iron Capacity
    Wang, Si-Cong
    Ma, Junjie
    Wang, Xinyue
    Xie, Ruo-Chen
    Wang, Wei
    ANALYTICAL CHEMISTRY, 2024, 96 (32) : 13096 - 13102
  • [27] Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent
    Szigeti, Krisztian
    Hegedus, Nikolett
    Racz, Kitti
    Horvath, Ildiko
    Veres, Daniel S.
    Szollosi, David
    Futo, Ildiko
    Modos, Karoly
    Bozo, Tamas
    Karlinger, Kinga
    Kovacs, Noemi
    Varga, Zoltan
    Babos, Magor
    Budan, Ferenc
    Padmanabhan, Parasuraman
    Gulyas, Balazs
    Mathe, Domokos
    CONTRAST MEDIA & MOLECULAR IMAGING, 2018,
  • [28] Flexible electrochromic devices based on tungsten oxide and Prussian blue nanoparticles for automobile applications
    Jeong, Chan Yang
    Kubota, Takashi
    Tajima, Kazuki
    RSC ADVANCES, 2021, 11 (46) : 28614 - 28620
  • [29] Mechanisms of inclusion of thallium-201 into Prussian blue nanoparticles for nuclear medicine applications
    Wulfmeier, Katarzyna M.
    Blower, Philip J.
    Fajardo, Galo Paez
    Huband, Steven
    de Rosales, Rafael T. M.
    Walker, David
    Terry, Samantha Y. A.
    Abbate, Vincenzo
    Pellico, Juan
    JOURNAL OF MATERIALS CHEMISTRY B, 2024, 12 (33) : 8087 - 8098
  • [30] Preparation of prussian blue nanoparticles with single precursor
    Jia, Zhiqian
    Sun, Genban
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2007, 302 (1-3) : 326 - 329