Subword complexes, cluster complexes, and generalized multi-associahedra

被引:33
作者
Ceballos, Cesar [1 ]
Labbe, Jean-Philippe [1 ]
Stump, Christian [2 ]
机构
[1] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany
[2] Leibniz Univ Hannover, Inst Algebra, D-30167 Hannover, Germany
关键词
Subword complex; Cluster complex; Generalized associahedron; Multi-triangulation; Auslander-Reiten quiver; Coxeter-Catalan combinatorics; SORTABLE ELEMENTS; TRIANGULATIONS; REALIZATIONS; POLYTOPE; FILLINGS;
D O I
10.1007/s10801-013-0437-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use subword complexes to provide a uniform approach to finite-type cluster complexes and multi-associahedra. We introduce, for any finite Coxeter group and any nonnegative integer k, a spherical subword complex called multi-cluster complex. For k=1, we show that this subword complex is isomorphic to the cluster complex of the given type. We show that multi-cluster complexes of types A and B coincide with known simplicial complexes, namely with the simplicial complexes of multi-triangulations and centrally symmetric multi-triangulations, respectively. Furthermore, we show that the multi-cluster complex is universal in the sense that every spherical subword complex can be realized as a link of a face of the multi-cluster complex.
引用
收藏
页码:17 / 51
页数:35
相关论文
共 65 条
[1]  
[Anonymous], 2012, Sage for power users
[3]   h-vectors of generalized associahedra and noncrossing partitions [J].
Athanasiadis, Christos A. ;
Brady, Thomas ;
McCammond, Jon ;
Watt, Colum .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
[4]   REPRESENTATION THEORY OF ARTIN ALGEBRAS -3 ALMOST SPLIT SEQUENCES [J].
AUSLANDER, M ;
REITEN, I .
COMMUNICATIONS IN ALGEBRA, 1975, 3 (03) :239-294
[5]  
Auslander M, 1974, CARLETON MATH LECT N, V9, P13
[6]  
Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
[7]   On commutation classes of reduced words in Weyl groups [J].
Bédard, R .
EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (06) :483-505
[8]  
Bergeron N., 2009, Sem. Lothar. Combin., V61A
[9]  
Bjorner A., 2005, Graduate Texts in Mathematics, V231, pxiv+363
[10]  
BOKOWSKI J., 2009, P 21 CAN C COMP GEOM, P41