Analytic expression for Taylor-Couette stability boundary

被引:105
作者
Esser, A
Grossmann, S
机构
[1] Fb. Physik der Philipps-Univ., D-35032, Marburg
关键词
D O I
10.1063/1.868963
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We analyze the mechanism that determines the boundary of stability in Taylor-Couette flow. By simple physical argument we derive an analytic expression to approximate the stability line for all radius ratios and all speed ratios, for co- and counterrotating cylinders. The expression includes viscosity and so generalizes Rayleigh's criterion. We achieve agreement with linear stability theory and with experiments in the whole parameter space. Explicit formulae are given for limiting cases. (C) 1996 American Institute of Physics.
引用
收藏
页码:1814 / 1819
页数:6
相关论文
共 23 条
[1]   FLOW REGIMES IN A CIRCULAR COUETTE SYSTEM WITH INDEPENDENTLY ROTATING CYLINDERS [J].
ANDERECK, CD ;
LIU, SS ;
SWINNEY, HL .
JOURNAL OF FLUID MECHANICS, 1986, 164 :155-183
[2]  
Chandrasekhar S., 1981, HYDRODYNAMIC HYDROMA
[3]   TRANSITION IN CIRCULAR COUETTE FLOW [J].
COLES, D .
JOURNAL OF FLUID MECHANICS, 1965, 21 :385-&
[4]   A NOTE ON TAYLOR INSTABILITY IN CIRCULAR COUETTE FLOW [J].
COLES, D .
JOURNAL OF APPLIED MECHANICS, 1967, 34 (03) :529-&
[5]  
COUETTE M., 1888, Comput. Rend., V107, P388
[6]   EXPERIMENTS ON THE STABILITY OF VISCOUS FLOW BETWEEN ROTATING CYLINDERS .2. VISUAL OBSERVATIONS [J].
DONNELLY, RJ ;
FULTZ, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1960, 258 (1292) :101-&
[7]  
Drazin P.G., 1981, HYDRODYNAMIC STABILI
[8]   LOCAL STABILITY ANALYSIS ALONG LAGRANGIAN PATHS [J].
ECKHARDT, B ;
YAO, D .
CHAOS SOLITONS & FRACTALS, 1995, 5 (11) :2073-2088
[9]   THE TAYLOR-COUETTE EIGENVALUE PROBLEM WITH INDEPENDENTLY ROTATING CYLINDERS [J].
GEBHARDT, T ;
GROSSMANN, S .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 90 (04) :475-490
[10]  
GEBHARDT T, COMMUNICATION