Theoretical and experimental analysis of heat generations of a pouch type LiMn2O4/carbon high power Li-polymer battery

被引:104
作者
Xiao, Meng [1 ]
Choe, Song-Yul [1 ]
机构
[1] Auburn Univ, Auburn, AL 36849 USA
关键词
Heat generation; Pouch type Li-polymer battery; Electrochemical and thermal model; Enthalpy heating; Heat of mixing; LITHIUM-ION BATTERY; THERMAL-MODEL; ENERGY-BALANCE; INSERTION CELL; SYSTEMS; SIMULATION; CATHODES; ENTROPY; PACK;
D O I
10.1016/j.jpowsour.2013.04.062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Charge transport and chemical reactions during charging and discharging of a battery produce heat that determines temperature behaviors. The elevated temperature causes undesired side reactions that accelerate degradation and potentially result in catastrophic operating conditions like a thermal runaway. The heat generated in an operating battery is generally approximated by the sum of the reversible and irreversible heat. The reversible heat is produced by the change of entropy. The irreversible heat is approximated by either the overpotential heating or Ohmic and reaction heating. Most studies have compared the surface temperature with tuned convection coefficients, but not investigated the heat generation directly. A study conveyed shows that two other heat source terms, enthalpy heating and heat of mixing, should be included to accurately and completely describe the heat generation. The first one is caused by diffusion of lithium ions in the solid phase and the second one by change of the gradient of ion concentrations. An electrochemical thermal model including these additional terms is experimentally validated against calorimetric measurements on a 15.7 Ah LiMn2O4/carbon pouch type power cell using a specially designed calorimeter. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 55
页数:10
相关论文
共 28 条
[1]   Thermal analysis of a Li-ion battery module under realistic EV operating conditions [J].
Awarke, Ali ;
Jaeger, Martin ;
Oezdemir, Oezen ;
Pischinger, Stefan .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (06) :617-630
[2]   A GENERAL ENERGY-BALANCE FOR BATTERY SYSTEMS [J].
BERNARDI, D ;
PAWLIKOWSKI, E ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (01) :5-12
[3]   Mathematical modeling of secondary lithium batteries [J].
Botte, GG ;
Subramanian, VR ;
White, RE .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2595-2609
[4]  
Cai L., 2011, J POWER SOURCES, V196, P5985
[5]   Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles [J].
Chacko, Salvio ;
Chung, Yongmann M. .
JOURNAL OF POWER SOURCES, 2012, 213 :296-303
[6]   Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs [J].
Doyle, M ;
Fuentes, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A706-A713
[7]   Comparison of modeling predictions with experimental data from plastic lithium ion cells [J].
Doyle, M ;
Newman, J ;
Gozdz, AS ;
Schmutz, CN ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (06) :1890-1903
[8]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[9]   Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery [J].
Forgez, Christophe ;
Do, Dinh Vinh ;
Friedrich, Guy ;
Morcrette, Mathieu ;
Delacourt, Charles .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2961-2968
[10]   SIMULATION AND OPTIMIZATION OF THE DUAL LITHIUM ION INSERTION CELL [J].
FULLER, TF ;
DOYLE, M ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :1-10