Iterated stochastic integrals in infinite dimensions: approximation and error estimates

被引:5
作者
Leonhard, Claudine [1 ]
Roessler, Andreas [2 ]
机构
[1] Christian Albrechts Univ Kiel, Dept Math, Christian Albrechts Pl 4, D-24118 Kiel, Germany
[2] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
来源
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | 2019年 / 7卷 / 02期
关键词
Iterated stochastic Ito integral in infinite dimensions; Q-Wiener process; Levy area simulation; Karhunen-Loeve expansion; Fourier series expansion; Numerical approximation; Error bound; 60H05; 60H15; 60H35; 65C30;
D O I
10.1007/s40072-018-0126-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Higher order numerical schemes for stochastic partial differential equations that do not possess commutative noise require the simulation of iterated stochastic integrals. In this work, we extend the algorithms derived by Kloeden et al. (Stoch Anal Appl 10(4):431-441, 1992. 10.1080/07362999208809281) and by Wiktorsson (Ann Appl Probab 11(2):470-487, 2001. 10.1214/aoap/1015345301) for the approximation of two-times iterated stochastic integrals involved in numerical schemes for finite dimensional stochastic ordinary differential equations to an infinite dimensional setting. These methods clear the way for new types of approximation schemes for SPDEs without commutative noise. Precisely, we analyze two algorithms to approximate two-times iterated integrals with respect to an infinite dimensional Q-Wiener process in case of a trace class operator Q given the increments of the Q-Wiener process. Error estimates in the mean-square sense are derived and discussed for both methods. In contrast to the finite dimensional setting, which is contained as a special case, the optimal approximation algorithm cannot be uniquely determined but is dependent on the covariance operator Q. This difference arises as the stochastic process is of infinite dimension.
引用
收藏
页码:209 / 239
页数:31
相关论文
共 11 条
[1]  
[Anonymous], 1965, INT J ENG SCI
[2]  
DaPrato G., 2014, STOCHASTIC EQUATIONS, DOI [10.1017/CBO9781107295513, DOI 10.1017/CB09781107295513]
[3]   A Milstein Scheme for SPDEs [J].
Jentzen, Arnulf ;
Roeckner, Michael .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (02) :313-362
[4]  
Kloeden P. E, 1992, Stochastic Modelling and Applied Probability, P103, DOI [10.1007/978-3-662-12616-5, DOI 10.1007/978-3-662-12616-5]
[5]   THE APPROXIMATION OF MULTIPLE STOCHASTIC INTEGRALS [J].
KLOEDEN, PE ;
PLATEN, E ;
WRIGHT, IW .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1992, 10 (04) :431-441
[6]  
Leonhard C., 2016, THESIS
[7]   ENHANCING THE ORDER OF THE MILSTEIN SCHEME FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH COMMUTATIVE NOISE [J].
Leonhard, Claudine ;
Roessler, Andreas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) :2585-2622
[8]  
Milstein G. N., 1995, NUMERICAL INTEGRATIO, V313, DOI [10.1007/978-94-015-8455-5, DOI 10.1007/978-94-015-8455-5]
[9]  
Prevot C., 2007, LECT NOTES MATH
[10]  
Wiktorsson M, 2001, ANN APPL PROBAB, V11, P470