Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities

被引:124
作者
Chen, Wei-Hsin [1 ]
Lu, Ke-Miao [2 ]
Liu, Shih-Hsien [3 ]
Tsai, Chi-Ming [3 ]
Lee, Wen-Jhy [2 ]
Lin, Ta-Chang [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Aeronaut & Astronaut, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Dept Environm Engn, Tainan 701, Taiwan
[3] China Steel Corp, Iron & Steel Res & Dev Dept, Kaohsiung 812, Taiwan
关键词
Non-oxidative and oxidative torrefaction; Fibrous and ligneous biomass; Superficial velocity; Heat and mass transfer; Energy yield; DIFFERENT OXYGEN CONCENTRATIONS; THERMAL PRETREATMENT; ACID PRETREATMENT; TORREFIED SAWDUST; BAGASSE; WOOD; GASIFICATION; PYROLYSIS; NITROGEN; KINETICS;
D O I
10.1016/j.biortech.2013.07.064
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The reaction characteristics of four biomass materials (i.e. oil palm fiber, coconut fiber, eucalyptus, and Cryptomeria japonica) with non-oxidative and oxidative torrefaction at various superficial velocities are investigated where nitrogen and air are used as carrier gases. Three torrefaction temperatures of 250, 300, and 350 degrees C are considered. At a given temperature, the solid yield of biomass is not affected by N-2 superficial velocity, revealing that the thermal degradation is controlled by heat and mass transfer in biomass. Increasing air superficial velocity decreases the solid yield, especially in oil palm fiber and coconut fiber, implying that the torrefaction reaction of biomass is dominated by surface oxidation. There exists an upper limit of air superficial velocity in the decrement of solid yield, suggesting that beyond this limit the thermal degradation of biomass is no longer governed by surface oxidation, but rather is controlled by internal mass transport. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:152 / 160
页数:9
相关论文
共 35 条
[21]   Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres [J].
Lu, Ke-Miao ;
Lee, Wen-Jhy ;
Chen, Wei-Hsin ;
Liu, Shih-Hsien ;
Lin, Ta-Chang .
BIORESOURCE TECHNOLOGY, 2012, 123 :98-105
[22]   Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass [J].
Lynam, Joan G. ;
Coronella, Charles J. ;
Yan, Wei ;
Reza, Mohammad T. ;
Vasquez, Victor R. .
BIORESOURCE TECHNOLOGY, 2011, 102 (10) :6192-6199
[23]   Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres [J].
Munir, S. ;
Daood, S. S. ;
Nimmo, W. ;
Cunliffe, A. M. ;
Gibbs, B. M. .
BIORESOURCE TECHNOLOGY, 2009, 100 (03) :1413-1418
[24]   A Study of Particle Size Effect on Biomass Torrefaction and Densification [J].
Peng, J. H. ;
Bi, H. T. ;
Sokhansanj, S. ;
Lim, J. C. .
ENERGY & FUELS, 2012, 26 (06) :3826-3839
[25]   Torrefaction of wood - Part 1. Weight loss kinetics [J].
Prins, MJ ;
Ptasinski, KJ ;
Janssen, FJJG .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2006, 77 (01) :28-34
[26]   Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product [J].
Rousset, P. ;
Macedo, L. ;
Commandre, J. -M. ;
Moreira, A. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2012, 96 :86-91
[27]   The fluidization behaviour of torrefied biomass in a cold model [J].
Rousset, Patrick ;
Petithuguenin, Thomas ;
Rodrigues, Thiago ;
Azevedo, Ana-Cristina .
FUEL, 2012, 102 :256-263
[28]   Experimental investigation and modelling study of long stick wood gasification in a top lit updraft fixed bed gasifier [J].
Saravanakumar, A. ;
Handasan, T. M. ;
Reed, Thomas B. ;
Bai, R. Kasturi .
FUEL, 2007, 86 (17-18) :2846-2856
[29]   Torrefaction of Norwegian Birch and Spruce: An Experimental Study Using Macro-TGA [J].
Tapasvi, Dhruv ;
Khalil, Roger ;
Skreiberg, Oyvind ;
Khanh-Quang Tran ;
Gronli, Morten .
ENERGY & FUELS, 2012, 26 (08) :5232-5240
[30]   Torrefaction of oil palm EFB in the presence of oxygen [J].
Uemura, Yoshimitsu ;
Omar, Wissam ;
Othman, Noor Aziah ;
Yusup, Suzana ;
Tsutsui, Toshio .
FUEL, 2013, 103 :156-160