Invariant densities for piecewise linear maps of the unit interval

被引:20
作者
Gora, Pawel [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MONOTONIC TRANSFORMATIONS; DELETED DIGITS; EXPANSIONS;
D O I
10.1017/S0143385708000801
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find an explicit formula for the invariant density h of an arbitrary eventually expanding piecewise linear map tau of an interval [0, 1]. We do not assume that the slopes of the branches are the same and we allow arbitrary number of shorter branches touching zero or touching one or hanging in between. The construction involves the matrix S which is defined in a way somewhat similar to the definition of the kneading matrix of a continuous piecewise monotonic map. Under some additional assumptions, we prove that if 1 is not an eigenvalue of S, then the dynamical system (tau, h . m) is ergodic with full support.
引用
收藏
页码:1549 / 1583
页数:35
相关论文
共 22 条
[1]   Detecting topological transitivity of piecewise monotone interval maps [J].
Alves, JF ;
Fachada, JL ;
Ramos, JS .
TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (5-6) :680-697
[2]  
[Anonymous], 1994, APPL MATH SCI
[3]  
Boyarsky A., 1997, Laws of Chaos-Invariant Measures and Dynamical Systems in One Dimension, pp xvi+399
[4]  
DAJANI K, 2008, SMF SEM C IN PRESS
[5]  
DAJANI K, ARXIV08023571
[6]  
Dajani K., 2002, Carus Mathematical Monographs, V29
[7]  
DAJANI K, MIXING PROPERTIES AL
[8]  
Dajani K, 2007, DISCRETE CONT DYN S, V18, P199
[9]  
ESLAMI P, EVENTUALLY EXPANDING
[10]  
Gelfond A.O., 1959, Izvest. Akad. Nauk, V23, P809