A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic systems

被引:44
作者
Anita, S
Capasso, V
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Al I Cuza, Fac Math, Iasi 6600, Romania
[3] Romanian Acad, Inst Math, Iasi 6600, Romania
[4] MIRIAM, Milan Res Ctr Ind & Appl Math, I-20133 Milan, Italy
关键词
stabilization; reaction-diffusion system; epidemic system; feedback control;
D O I
10.1016/S1468-1218(01)00025-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:453 / 464
页数:12
相关论文
共 12 条
[1]  
Anita S., 2000, ANAL CONTROL AGE DEP
[2]  
Barbu V., 1993, ANAL CONTROL NONLINE
[3]  
Barbu V., 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces
[4]   Analysis of a reaction-diffusion system modeling man-environment-man epidemics [J].
Capasso, V ;
Wilson, RE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (02) :327-346
[5]   GLOBAL SOLUTION FOR A DIFFUSIVE NON-LINEAR DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (02) :274-284
[7]  
Capasso V., 1993, MATH STRUCTURES EPID, V97
[8]  
Kendall D.G., 1965, Mathematics and Computer Science in Biology and Medicine, P213
[9]   Contribution to the mathematical theory of epidemics [J].
Kermack, WO ;
McKendrick, AG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) :700-721
[10]  
Lions J.-L., 1988, RMA, V8