Global Asymptotic Stability of a PID Control System With Coulomb Friction

被引:27
|
作者
Bisoffi, Andrea [1 ]
Da Lio, Mauro [1 ]
Teel, Andrew R. [2 ]
Zaccarian, Luca [1 ,3 ,4 ]
机构
[1] Univ Trento, Dipartimento Ingn Ind, I-38122 Trento, Italy
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[3] CNRS, LAAS, F-31400 Toulouse, France
[4] Univ Toulouse, F-31077 Toulouse 4, France
关键词
asymptotic stability; robust asymptotic stability; Lyapunov methods; discontinuous Lyapunov function; friction; position control; PID control; mechanical systems; nonlinear dynamical systems; MODEL; COMPENSATION;
D O I
10.1109/TAC.2017.2774443
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a point mass subject to Coulomb friction in feedback with a PID controller, we consider a model based on a differential inclusion comprising all the possible magnitudes of static friction during the stick phase and having unique solutions. We study the set of all equilibria and we establish its global asymptotic stability using a discontinuous Lyapunov-like function, and a suitable LaSalle's invariance principle. The well-posedness of the proposed model allows to establish useful robustness results, including an ISS property from a suitable input in a perturbed context. Simulation results are also given to illustrate our statements.
引用
收藏
页码:2654 / 2661
页数:8
相关论文
共 50 条
  • [1] Hybrid model formulation and stability analysis of a PID-controlled motion system with Coulomb friction
    Bisoffi, A.
    Beerens, R.
    Zaccarian, L.
    Heemels, W. P. M. H.
    Nijmeijer, H.
    van de Wouw, N.
    IFAC PAPERSONLINE, 2019, 52 (16): : 84 - 89
  • [2] Global asymptotic stability of PID controller for robotic manipulators
    Su, Yuxin
    Zheng, Chunhong
    Mueller, Peter C.
    2007 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS I-V, CONFERENCE PROCEEDINGS, 2007, : 3244 - +
  • [3] Global asymptotic stability for systems with friction and input backlash
    Ahmad, NJ
    Ebraheem, HK
    Qasem, MQ
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL & 13TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2005, : 212 - 218
  • [4] Global Asymptotic Saturated PID Control for Robot Manipulators
    Su, Yuxin
    Mueller, Peter C.
    Zheng, Chunhong
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2010, 18 (06) : 1280 - 1288
  • [5] Global Asymptotic Stability of a Rational System
    Hu, Lin-Xia
    Jia, Xiu-Mei
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] Stability and PID Control for Networked Control System
    Dang, Xiangdong
    Zhang, Qingling
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 921 - 926
  • [7] On the stability of digital position control with viscous damping and coulomb friction
    Budai C.
    Kovács L.L.
    Budai, Csaba (budai@mogi.bme.hu), 1600, Budapest University of Technology and Economics (61): : 266 - 271
  • [8] Global asymptotic stability of the Goodwin system with repression
    Sanchez, Luis A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2151 - 2156
  • [9] GLOBAL ASYMPTOTIC STABILITY IN A NONAUTONOMOUS COOPERATIVE SYSTEM
    CUI Jin’an
    CHEN Lansun Department of Mathematics Xinjiang University
    Systems Science and Mathematical Sciences, 1993, (01) : 44 - 51
  • [10] GLOBAL ASYMPTOTIC STABILITY IN A PERIODIC INTEGRODIFFERENTIAL SYSTEM
    GOPALSAMY, K
    TOHOKU MATHEMATICAL JOURNAL, 1985, 37 (03) : 323 - 332