Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2

被引:95
作者
Occhialini, Alessandro [1 ]
Lin, Myat T. [2 ]
Andralojc, P. John [1 ]
Hanson, Maureen R. [2 ]
Parry, Martin A. J. [1 ,3 ]
机构
[1] Rothamsted Res, Plant Biol & Crop Sci, Harpenden AL5 2JQ, Herts, England
[2] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[3] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YW, England
基金
美国国家科学基金会; 英国生物技术与生命科学研究理事会; 美国国家卫生研究院;
关键词
Rubisco; photosynthesis; CO2 concentration mechanism; chloroplast transformation; Synechococcus elongatus; Nicotiana tabacum; SYNECHOCOCCUS PCC7942 REVEALS; RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE; INCREASE PHOTOSYNTHESIS; MULTIGENE OPERONS; LARGE SUBUNIT; PROTEIN; CARBOXYSOMES; BIOGENESIS; LEAVES; MICROCOMPARTMENTS;
D O I
10.1111/tpj.13098
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2. Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2. We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme.
引用
收藏
页码:148 / 160
页数:13
相关论文
共 49 条
  • [21] Coupled chaperone action in folding and assembly of hexadecameric Rubisco
    Liu, Cuimin
    Young, Anna L.
    Starling-Windhof, Amanda
    Bracher, Andreas
    Saschenbrecker, Sandra
    Rao, Bharathi Vasudeva
    Rao, Karnam Vasudeva
    Berninghausen, Otto
    Mielke, Thorsten
    Hartl, F. Ulrich
    Beckmann, Roland
    Hayer-Hartl, Manajit
    [J]. NATURE, 2010, 463 (7278) : 197 - U81
  • [22] Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA
    Long, Benedict M.
    Badger, Murray R.
    Whitney, Spencer M.
    Price, G. Dean
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (40) : 29323 - 29335
  • [23] Over-expression of the β-carboxysomal CcmM protein in Synechococcus PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content
    Long, Benedict M.
    Rae, Benjamin D.
    Badger, Murray R.
    Price, G. Dean
    [J]. PHOTOSYNTHESIS RESEARCH, 2011, 109 (1-3) : 33 - 45
  • [24] Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons
    Lu, Yinghong
    Rijzaani, Habib
    Karcher, Daniel
    Ruf, Stephanie
    Bock, Ralph
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (08) : E623 - E632
  • [25] Maliga P, 2014, METHODS MOL BIOL, V1132, P147, DOI 10.1007/978-1-62703-995-6_8
  • [26] Can the Cyanobacterial Carbon-Concentrating Mechanism Increase Photosynthesis in Crop Species? A Theoretical Analysis
    McGrath, Justin M.
    Long, Stephen P.
    [J]. PLANT PHYSIOLOGY, 2014, 164 (04) : 2247 - 2261
  • [27] Elevated CO2 effects during leaf ontogeny - A new perspective on acclimation
    Miller, A
    Tsai, CH
    Hemphill, D
    Endres, M
    Rodermel, S
    Spalding, M
    [J]. PLANT PHYSIOLOGY, 1997, 115 (03) : 1195 - 1200
  • [28] Evolving improved Synechococcus Rubisco functional expression in Escherichia coli
    Mueller-Cajar, Oliver
    Whitney, Spencer M.
    [J]. BIOCHEMICAL JOURNAL, 2008, 414 (02) : 205 - 214
  • [29] Blue Native electrophoresis to study mitochondrial and other protein complexes
    Nijtmans, LGJ
    Henderson, NS
    Holt, IJ
    [J]. METHODS, 2002, 26 (04) : 327 - 334
  • [30] Redesigning photosynthesis to sustainably meet global food and bioenergy demand
    Ort, Donald R.
    Merchant, Sabeeha S.
    Alric, Jean
    Barkan, Alice
    Blankenship, Robert E.
    Bock, Ralph
    Croce, Roberta
    Hanson, Maureen R.
    Hibberd, Julian M.
    Long, Stephen P.
    Moore, Thomas A.
    Moroney, James
    Niyogi, Krishna K.
    Parry, Martin A. J.
    Peralta-Yahya, Pamela P.
    Prince, Roger C.
    Redding, Kevin E.
    Spalding, Martin H.
    van Wijk, Klaas J.
    Vermaas, Wim F. J.
    von Caemmerer, Susanne
    Weber, Andreas P. M.
    Yeates, Todd O.
    Yuan, Joshua S.
    Zhu, Xin Guang
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (28) : 8529 - 8536