Magnetism and magnetic transport properties of the polycrystalline graphene nanoribbon heterojunctions

被引:33
作者
Wang, D. [1 ]
Zhang, Z. H. [1 ]
Deng, X. Q. [1 ]
Fan, Z. Q. [1 ]
Tang, G. P. [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha 410114, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAIN-BOUNDARY; GRAPHITE; MAGNETORESISTANCE; BEHAVIORS;
D O I
10.1016/j.carbon.2015.10.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The polycrystalline structures for graphene are practically unavoidable by the currently existing growth routes, thus the scattering issue of electrons by grain boundary (GBs) becomes a theoretical and an experimental relevant one. Here, magnetic transport properties of the polycrystalline graphene nanoribbons (PGNRs) with a zigzag-armchair-zigzag structure are investigated systematically. It shows that GBs can induce significant localized electron states and magnetic ordering in the region consisting of GBs and armchair segment, and the interdomain electronic transmission across the GBs is transparent or blocked completely depending on the spin direction (a or b) of electrons as well as the microscopic details and relative orientation of GBs, which causes a special spin polarization for the magnetic transport. Especially, the perfect spin-filtering, spin-rectifying, and giant magnetoresistance effects can be realized simultaneously in such heterojunctions. These novel features can be rationalized by the spin splitting of molecular levels as well as the delocalization degree and parity limitation of molecular orbital wave functions in the scattering region serving as an extended molecule. Also shown is that PGNR-based heterojunctions possess a large range of magnetic behaviors with variation of its geometrical size. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:204 / 212
页数:9
相关论文
共 43 条
[1]   Transport properties of branched graphene nanoribbons [J].
Andriotis, Antonis N. ;
Menon, Madhu .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[2]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/nnano.2010.8, 10.1038/NNANO.2010.8]
[3]   Monolayers of graphite rotated by a defined angle:: hexagonal superstructures by STM [J].
Beyer, H ;
Müller, M ;
Schimmel, T .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 68 (02) :163-166
[4]   Insights into few-layer epitaxial graphene growth on 4H-SiC(000(1)over-bar substrates from STM studies [J].
Biedermann, Laura B. ;
Bolen, Michael L. ;
Capano, Michael A. ;
Zemlyanov, Dmitry ;
Reifenberger, Ronald G. .
PHYSICAL REVIEW B, 2009, 79 (12)
[5]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[6]   Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene [J].
Campos, Leonardo C. ;
Manfrinato, Vitor R. ;
Sanchez-Yamagishi, Javier D. ;
Kong, Jing ;
Jarillo-Herrero, Pablo .
NANO LETTERS, 2009, 9 (07) :2600-2604
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Electron transport of L-shaped graphene nanoribbons [J].
Chen, Yuan Ping ;
Xie, Yue E. ;
Yan, Xiao Hong .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)
[9]   Asymmetric transport in asymmetric T-shaped graphene nanoribbons [J].
Chen, Yuan Ping ;
Xie, Yue E. ;
Sun, L. Z. ;
Zhong, Jianxin .
APPLIED PHYSICS LETTERS, 2008, 93 (09)
[10]   Probing graphene grain boundaries with optical microscopy [J].
Dinh Loc Duong ;
Han, Gang Hee ;
Lee, Seung Mi ;
Gunes, Fethullah ;
Kim, Eun Sung ;
Kim, Sung Tae ;
Kim, Heetae ;
Quang Huy Ta ;
So, Kang Pyo ;
Yoon, Seok Jun ;
Chae, Seung Jin ;
Jo, Young Woo ;
Park, Min Ho ;
Chae, Sang Hoon ;
Lim, Seong Chu ;
Choi, Jae Young ;
Lee, Young Hee .
NATURE, 2012, 490 (7419) :235-+