Weil-Petersson isometries via the pants complex

被引:13
作者
Brock, Jeffrey [1 ]
Margalit, Dan [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
关键词
Teichmuller space; Weil-Petersson metric; isometries; mapping class groups;
D O I
10.1090/S0002-9939-06-08577-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend a theorem of Masur-Wolf which states that given finite-area hyperbolic surface S, every isometry of the Teichmuller space for S with the Weil-Petersson metric is induced by an element of the mapping class group for S. Our argument handles the previously untreated cases of the four times-punctured sphere, the once-punctured torus, and the twice-punctured torus.
引用
收藏
页码:795 / 803
页数:9
相关论文
共 50 条
[21]   The Weil-Petersson Kahler form and affine foliations on surfaces [J].
Papadopoulos, A ;
Penner, R .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2005, 27 (01) :53-77
[22]   Virtual homological eigenvalues and the Weil-Petersson translation length [J].
Yi Liu .
Science China Mathematics, 2023, 66 :2119-2132
[23]   Weil-Petersson geometry of Teichmüller–Coxeter complex and its finite rank property [J].
Sumio Yamada .
Geometriae Dedicata, 2010, 145 :43-63
[24]   Weil-Petersson geometry of Teichmuller-Coxeter complex and its finite rank property [J].
Yamada, Sumio .
GEOMETRIAE DEDICATA, 2010, 145 (01) :43-63
[25]   Asymptotics of Weil-Petersson Geodesics II: Bounded Geometry and Unbounded Entropy [J].
Brock, Jeffrey ;
Masur, Howard ;
Minsky, Yair .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (04) :820-850
[26]   A Weil-Petersson type metric on spaces of metric graphs [J].
Pollicott, Mark ;
Sharp, Richard .
GEOMETRIAE DEDICATA, 2014, 172 (01) :229-244
[27]   Virtual homological eigenvalues and the Weil-Petersson translation length [J].
Liu, Yi .
SCIENCE CHINA-MATHEMATICS, 2023, 66 (09) :2119-2132
[28]   Spectral theory for the Weil-Petersson Laplacian on the Riemann moduli space [J].
Ji, Lizhen ;
Mazzeo, Rafe ;
Mueller, Werner ;
Vasy, Andras .
COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (04) :867-894
[29]   GEODESIC-LENGTH FUNCTIONS AND THE WEIL-PETERSSON CURVATURE TENSOR [J].
Wolpert, Scott A. .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2012, 91 (02) :321-359
[30]   TRIANGULATED RIEMANN SURFACES WITH BOUNDARY AND THE WEIL-PETERSSON POISSON STRUCTURE [J].
Mondello, Gabriele .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 81 (02) :391-436