Classical solutions of quasilinear parabolic systems on two dimensional domains

被引:3
作者
Kaiser, Hans-Christoph [1 ]
Neidhardt, Hagen [1 ]
Rehberg, Joachim [1 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2006年 / 13卷 / 03期
关键词
partial differential equations; quasilinear parabolic systems; non-smooth domains; mixed boundary conditions; discontinuous coefficients; local classical solutions; reaction-diffusion systems;
D O I
10.1007/s00030-006-3028-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using results on abstract evolutions equations and recently obtained results on elliptic operators with discontinuous coefficients including mixed boundary conditions we prove that quasilinear parabolic systems admit a local, classical solution in the space of p-integrable functions, for some p greater than 1, over a bounded two dimensional space domain. The treatment of such equations in a space of integrable functions enables us to define the normal component of the current across the boundary of any Lipschitz subset. As applications we have in mind systems of reaction diffusion equations, e.g. van Roosbroeck's system.
引用
收藏
页码:287 / 310
页数:24
相关论文
共 29 条
[1]  
Amann H., 1995, Abstract linear theory, volume89 of Monographs in Mathematics, VI
[2]  
Amann H, 1993, FUNCTION SPACES DIFF, V133, P9, DOI DOI 10.1007/978-3-663-11336-2
[3]  
[Anonymous], 1982, PARTIAL DIFFERENTIAL
[4]  
[Anonymous], 1980, INTERPOLATION THEORY
[5]   THE THERMISTOR PROBLEM - EXISTENCE, SMOOTHNESS, UNIQUENESS, BLOWUP [J].
ANTONTSEV, SN ;
CHIPOT, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (04) :1128-1156
[6]  
BENSOUSSAN A, 2001, 748 RHEIN FRIEDR WIL
[7]  
Bergh J., 1976, GRUNDLEHREN MATH WIS, V223
[8]  
Ciarlet P, 1979, STUDIES MATH ITS APP, V4
[9]  
Clement Ph., 2001, J EVOL EQU, V1, P39, DOI [DOI 10.1007/PL00001364, 10.1007/PL00001364]
[10]  
Costabel M, 1999, RAIRO-MATH MODEL NUM, V33, P627