On integer domination in graphs and vizing-like problems

被引:0
|
作者
Bresar, Bostjan
Henning, Michael A.
Klavzar, Sandi
机构
[1] Univ Maribor, FEECS, SLO-2000 Maribor, Slovenia
[2] Univ KwaZulu Natal, Sch Math Stat & Informat Technol, ZA-3209 Pietermaritzburg, South Africa
[3] Univ Maribor, Dept Math & Comp Sci, PeF, SLO-2000 Maribor, Slovenia
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2006年 / 10卷 / 05期
关键词
{k}-dominating function; integer domination; cartesian product; Vizing's conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of {k}-dominating functions in graphs (or integer domination as we shall also say) started by Domke, Hedetniemi, Laskar, and Fricke [5]. For k >= 1 an integer, a function f : V (G) --> {0,1,..., k} defined on the vertices of a graph G is called a {k}-dominating function if the sum of its function values over any closed neighborhood is at least k. The weight of a {k}-dominating function is the sum of its function values over all vertices. The {k}-domination number of G is the minimum weight of a {k}-dominating function of G. We study the {k}-domination number on the Cartesian product of graphs, mostly on problems related to the famous Vizing's conjecture. A connection between the {k}-domination number and other domination type parameters is also studied.
引用
收藏
页码:1317 / 1328
页数:12
相关论文
共 50 条
  • [31] On the {k}-domination number of Cartesian products of graphs
    Hou, Xinmin
    Lu, You
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3413 - 3419
  • [32] Locating-Total Domination in Grid Graphs
    Guo, Jia
    Li, Zhuo
    Lu, Mei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1195 - 1204
  • [33] PRIME FACTORIZATION AND DOMINATION IN THE HIERARCHICAL PRODUCT OF GRAPHS
    Anderson, S. E.
    Guo, Y.
    Tenney, A.
    Wash, K. A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (04) : 873 - 890
  • [34] Convex domination in the composition and cartesian product of graphs
    Labendia, Mhelmar A.
    Canoy, Sergio R., Jr.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (04) : 1003 - 1009
  • [35] On k-Fair Total Domination in Graphs
    Bent-Usman, Wardah M.
    Isla, Rowena T.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (02): : 578 - 589
  • [36] Convex domination in the composition and cartesian product of graphs
    Mhelmar A. Labendia
    Sergio R. Canoy
    Czechoslovak Mathematical Journal, 2012, 62 : 1003 - 1009
  • [37] A General Lower Bound for the Domination Number of Cylindrical Graphs
    Juan Carreno, Jose
    Antonio Martinez, Jose
    Luz Puertas, Maria
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1671 - 1684
  • [38] Upper k-tuple total domination in graphs
    Kazemi, Adel P.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2017, 13 (04) : 563 - 579
  • [39] Bounds on the 2-Rainbow Domination Number of Graphs
    Yunjian Wu
    Nader Jafari Rad
    Graphs and Combinatorics, 2013, 29 : 1125 - 1133
  • [40] Bounds on the 2-Rainbow Domination Number of Graphs
    Wu, Yunjian
    Rad, Nader Jafari
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1125 - 1133