On integer domination in graphs and vizing-like problems

被引:0
|
作者
Bresar, Bostjan
Henning, Michael A.
Klavzar, Sandi
机构
[1] Univ Maribor, FEECS, SLO-2000 Maribor, Slovenia
[2] Univ KwaZulu Natal, Sch Math Stat & Informat Technol, ZA-3209 Pietermaritzburg, South Africa
[3] Univ Maribor, Dept Math & Comp Sci, PeF, SLO-2000 Maribor, Slovenia
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2006年 / 10卷 / 05期
关键词
{k}-dominating function; integer domination; cartesian product; Vizing's conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of {k}-dominating functions in graphs (or integer domination as we shall also say) started by Domke, Hedetniemi, Laskar, and Fricke [5]. For k >= 1 an integer, a function f : V (G) --> {0,1,..., k} defined on the vertices of a graph G is called a {k}-dominating function if the sum of its function values over any closed neighborhood is at least k. The weight of a {k}-dominating function is the sum of its function values over all vertices. The {k}-domination number of G is the minimum weight of a {k}-dominating function of G. We study the {k}-domination number on the Cartesian product of graphs, mostly on problems related to the famous Vizing's conjecture. A connection between the {k}-domination number and other domination type parameters is also studied.
引用
收藏
页码:1317 / 1328
页数:12
相关论文
共 50 条
  • [21] Global Hop Domination Numbers of Graphs
    Salasalan, Gemma P.
    Canoy, Sergio R., Jr.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (01): : 112 - 125
  • [22] ON TOTAL DOMINATION IN THE CARTESIAN PRODUCT OF GRAPHS
    Bresar, Bostjan
    Hartinger, Tatiana Romina
    Kos, Tim
    Milanic, Martin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 963 - 976
  • [23] Signed Domination Number of Some Graphs
    Alikhani, Saeid
    Ramezani, Fatemeh
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (01): : 291 - 296
  • [24] A 3/4-approximation of Vizing's conjecture for claw-free graphs
    Bresar, Bostjan
    Henning, Michael A.
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 416 - 422
  • [25] Certain domination numbers for Cartesian product of graphs
    Arulanand, S.
    Rajan, R. Sundara
    Prabhu, S.
    Stephen, Sudeep
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (03) : 1045 - 1058
  • [26] Roman {2}-domination in Graphs and Graph Products
    Alizadeh, F.
    Maimani, H. R.
    Majd, L. Parsaei
    Parsa, M. Rajabi
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2023, 18 (02): : 117 - 126
  • [27] Locating-Total Domination in Grid Graphs
    Jia Guo
    Zhuo Li
    Mei Lu
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1195 - 1204
  • [28] On the power domination number of the Cartesian product of graphs
    Koh, K. M.
    Soh, K. W.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (03) : 253 - 257
  • [29] GLOBAL EQUITABLE DOMINATION IN CARTESIAN PRODUCT OF GRAPHS
    Vaidya, S. K.
    Pandit, R. M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (05): : 341 - 356
  • [30] F3-domination problem of graphs
    Chang, Chan-Wei
    Kuo, David
    Liaw, Sheng-Chyang
    Yan, Jing-Ho
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (02) : 400 - 413