A Gross-Kohnen-Zagier formula for Heegner-Drinfeld cycles

被引:4
|
作者
Howard, Benjamin [1 ]
Shnidman, Ari [1 ,2 ]
机构
[1] Boston Coll, Dept Math, 140 Commonwealth Ave, Chestnut Hill, MA 02467 USA
[2] Hebrew Univ Jerusalem, Einstein Inst Math, Jerusalem, Israel
关键词
L-functions; Gross-Zagier formula; Waldspurger formula; TAYLOR EXPANSION; SHTUKAS; VALUES;
D O I
10.1016/j.aim.2019.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be the field of rational functions on a smooth projective curve over a finite field, and let pi be an unramified cuspidal automorphic representation for PGL(2) over F. We prove a variant of the formula of Yun and Zhang relating derivatives of the L-function of pi to the self-intersections of Heegner-Drinfeld cycles on moduli spaces of shtukas. In our variant, instead of a self-intersection, we compute the intersection pairing of Heegner-Drinfeld cycles coming from two different quadratic extensions of F, and relate the intersection to the r-th derivative of a product of two tonic period integrals. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:117 / 194
页数:78
相关论文
共 35 条