Parameter identification of PEMFC based on Convolutional neural network optimized by balanced deer hunting optimization algorithm

被引:48
作者
Yuan, Zhi [1 ]
Wang, Weiqing [1 ]
Wang, Haiyun [1 ]
Ashourian, Mohsen [2 ]
机构
[1] Xinjiang Univ, Minist Educ, Engn Res Ctr Renewable Energy Power Generat & Gri, Urumqi 830047, Xinjiang, Peoples R China
[2] Islamic Azad Univ, Dept Elect Engn, Majlesi Branch, Esfahan, Iran
关键词
Parameter identification; Proton exchange membrane fuel cell; Deer hunting optimization algorithm; Convolutional neural network; MEMBRANE FUEL-CELL; STEADY-STATE; GENETIC ALGORITHM; FEATURE-SELECTION; FORECAST ENGINE; MODEL; MANAGEMENT; PREDICTION; DIAGNOSIS; VARIABLES;
D O I
10.1016/j.egyr.2020.06.011
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a new optimal method for the parameter identification of a proton exchange membrane fuel cell (PEMFC) for increasing the model accuracy. In this research, a new improved version based on deer hunting optimization algorithm (DHOA) is applied to the Convolutional neural network for the PEMFC parameters identification purpose. Indeed, the method is implemented to develop the method performance for estimating the PEMFC model parameters. The method is then validated based on 4 operational conditions. Experimental results declared that utilizing the proposed method gives a prediction with higher accuracy for the parameters of the PEMFC model. (C) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1572 / 1580
页数:9
相关论文
共 54 条
[1]   Robust adaptive neural network control for PEM fuel cell [J].
Abbaspour, Alireza ;
Khalilnejad, Arash ;
Chen, Zheng .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (44) :20385-20395
[2]   Multi-objective energy management in a micro-grid [J].
Aghajani, Gholamreza ;
Ghadimi, Noradin .
ENERGY REPORTS, 2018, 4 :218-225
[3]  
Aghdam HN, 2011, 2011 10 INT C ENV EL, P1
[4]   Extracting Appropriate Nodal Marginal Prices for All Types of Committed Reserve [J].
Akbary, Paria ;
Ghiasi, Mohammad ;
Pourkheranjani, Mohammad Reza Rezaie ;
Alipour, Hamidreza ;
Ghadimi, Noradin .
COMPUTATIONAL ECONOMICS, 2019, 53 (01) :1-26
[5]  
[Anonymous], 2007, Proc. Adv. Neural Inf. Process. Syst.
[6]  
[Anonymous], 2014, ENGINEERING, DOI DOI 10.4236/ENG.2014.68044
[7]   Techno-economic Feasibility Analysis of Stand-alone Renewable Energy Systems (PV/bat, Wind/bat and Hybrid PV/wind/bat) in Kerman, Iran [J].
Askari, I. Baniasad ;
Ameri, M. .
ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2012, 7 (01) :45-60
[8]   Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell [J].
Asl, S. M. Sharifi ;
Rowshanzamir, S. ;
Eikani, M. H. .
ENERGY, 2010, 35 (04) :1633-1646
[9]   Efficient unstructured mesh generation for marine renewable energy applications [J].
Avdis, Alexandros ;
Candy, Adam S. ;
Hill, Jon ;
Kramer, Stephan C. ;
Piggott, Matthew D. .
RENEWABLE ENERGY, 2018, 116 :842-856
[10]  
Bansal JC, 2019, STUD COMPUT INTELL, V779, P11, DOI 10.1007/978-3-319-91341-4_2