Fatigue fracture of hydrogels

被引:187
作者
Tang, Jingda [1 ,2 ]
Li, Jianyu [1 ]
Vlassak, Joost J. [1 ]
Suo, Zhigang [1 ,3 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[3] Harvard Univ, Kavli Inst Bionano Sci & Technol, Cambridge, MA 02138 USA
关键词
Hydrogel; Delayed fracture; Fatigue fracture; Polyacrylamide; DELAYED FRACTURE; NATURAL-RUBBER; MODEL; BEHAVIOR; SOLVENT;
D O I
10.1016/j.eml.2016.09.010
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Rapid advances are taking place to develop hydrogels of high stretchability and toughness, but fatigue fracture has not been studied for any hydrogels. This negligence hinders the development of hydrogels and their applications. Here we initiate a study of fatigue fracture of hydrogels. Wechoose polyacrylamide hydrogel as a model material. To place fatigue fracture in context, we apply monotonic, static, and cyclic load, and observe three types of fracture behavior: fast fracture, delayed fracture, and fatigue fracture. Below the critical load for fast fracture, we find two distinct thresholds, one for delayed fracture, and the other for fatigue fracture. The fracture behavior of hydrogel is sensitive to both the amplitude of load and the concentration of water. We relate the experimental observations to the molecular picture of swollen polymer networks. Fatigue fracture of hydrogels is a topic ready for scientific studies and engineering advances. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 50 条
[1]   THRESHOLD FRACTURE ENERGIES FOR ELASTOMERS [J].
AHAGON, A ;
GENT, AN .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1975, 13 (10) :1903-1911
[2]   Fracture energy of polymer gels with controlled network structures [J].
Akagi, Yuki ;
Sakurai, Hayato ;
Gong, Jian Ping ;
Chung, Ung-il ;
Sakai, Takamasa .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (14)
[3]   Mechanical properties of hydrogels and their experimental determination [J].
Anseth, KS ;
Bowman, CN ;
BrannonPeppas, L .
BIOMATERIALS, 1996, 17 (17) :1647-1657
[4]   Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole-dipole interaction [J].
Bai, Tao ;
Zhang, Peng ;
Han, Yanjiao ;
Liu, Yuan ;
Liu, Wenguang ;
Zhao, Xiaoli ;
Lu, William .
SOFT MATTER, 2011, 7 (06) :2825-2831
[5]   Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt [J].
Bai, Yuanyuan ;
Chen, Baohong ;
Xiang, Feng ;
Zhou, Jinxiong ;
Wang, Hong ;
Suo, Zhigang .
APPLIED PHYSICS LETTERS, 2014, 105 (15)
[6]   Solvent control of crack dynamics in a reversible hydrogel [J].
Baumberger, T ;
Caroli, C ;
Martina, D .
NATURE MATERIALS, 2006, 5 (07) :552-555
[7]   Functional hydrogel structures for autonomous flow control inside microfluidic channels [J].
Beebe, DJ ;
Moore, JS ;
Bauer, JM ;
Yu, Q ;
Liu, RH ;
Devadoss, C ;
Jo, BH .
NATURE, 2000, 404 (6778) :588-+
[8]   Delayed fracture of an inhomogeneous soft solid [J].
Bonn, D ;
Kellay, H ;
Prochnow, M ;
Ben-Djemiaa, K ;
Meunier, J .
SCIENCE, 1998, 280 (5361) :265-267
[9]   A model of the fracture of double network gels [J].
Brown, Hugh R. .
MACROMOLECULES, 2007, 40 (10) :3815-3818
[10]   Hydrogels in sensing applications [J].
Buenger, Daniel ;
Topuz, Fuat ;
Groll, Juergen .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (12) :1678-1719