Fault Diagnosis of Rolling Bearings Based on an Improved Stack Autoencoder and Support Vector Machine

被引:145
|
作者
Cui, Mingliang [1 ]
Wang, Youqing [1 ]
Lin, Xinshuang [1 ]
Zhong, Maiying [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Rolling bearings; Support vector machines; Fault diagnosis; Training; Vibrations; Deep learning; rolling bearing; SVM; FD-SAE;
D O I
10.1109/JSEN.2020.3030910
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, autoencoder has been widely used for the fault diagnosis of mechanical equipment because of its excellent performance in feature extraction and dimension reduction; however, the original autoencoder only has limited feature extraction ability due to the lack of label information. To solve this issue, this study proposes a feature distance stack autoencoder (FD-SAE) for rolling bearing fault diagnosis. Compared with the existing methods, FD-SAE has stronger feature extraction ability and faster network convergence speed. By analyzing the characteristics of original rolling bearing data, it is found that there are evident differences between normal data and faulty data. Therefore, a simple linear support vector machine (SVM) is used to classify normal data and faulty data, and then the proposed FD-SAE is used for fault classification. The novel combination of SVM and FD-SAE has simple structure and little computational complexity. Finally, the proposed method is verified on the rolling bearing data set of Case Western Reserve University (CWRU).
引用
收藏
页码:4927 / 4937
页数:11
相关论文
共 50 条
  • [21] Fault Diagnosis of Rolling Bearing Based on Wavelet Packet Transform and Support Vector Machine
    Yang Zhengyou
    Peng Tao
    Li Jianbao
    Yang Huibin
    Jiang Haiyan
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 650 - 653
  • [22] Rolling bearing fault diagnosis based on empirical mode decomposition and support vector machine
    Xu K.
    Chen Z.-H.
    Zhang C.-B.
    Dong G.-Z.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2019, 36 (06): : 915 - 922
  • [23] Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine
    Abbasion, S.
    Rafsanjani, A.
    Farshidianfar, A.
    Irani, N.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (07) : 2933 - 2945
  • [24] Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings
    Hao, Rujiang
    Peng, Zhike
    Feng, Zhipeng
    Chu, Fulei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2011, 22 (04)
  • [25] Hierarchical fuzzy entropy and improved support vector machine based binary tree approach for rolling bearing fault diagnosis
    Li, Yongbo
    Xu, Minqiang
    Zhao, Haiyang
    Huang, Wenhu
    MECHANISM AND MACHINE THEORY, 2016, 98 : 114 - 132
  • [26] Research on Rolling Bearing Fault Diagnosis Based on Variational Modal Decomposition Parameter Optimization and an Improved Support Vector Machine
    Li, Lin
    Meng, Weilun
    Liu, Xiaodong
    Fei, Jiyou
    ELECTRONICS, 2023, 12 (06)
  • [27] Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
    Zhu, Haiping
    Cheng, Jiaxin
    Zhang, Cong
    Wu, Jun
    Shao, Xinyu
    APPLIED SOFT COMPUTING, 2020, 88
  • [28] Fault diagnosis of rolling bearings based on improved enhanced envelope spectrum
    Huang, Baoyu
    Zhang, Yongxiang
    Zhu, Danchen
    JOURNAL OF VIBROENGINEERING, 2021, 23 (02) : 373 - 384
  • [29] A method of fault diagnosis of rolling bearings based on ACMD and improved MOMEDA
    Shi J.
    Huang Y.
    Wang F.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (16): : 218 - 261
  • [30] Research on Diesel Engine Fault Diagnosis Method Based on Stacked Sparse Autoencoder and Support Vector Machine
    Bai, Huajun
    Zhan, Xianbiao
    Yan, Hao
    Wen, Liang
    Yan, Yunbin
    Jia, Xisheng
    ELECTRONICS, 2022, 11 (14)