Protonic conductivity and fuel cell tests of nanocomposite membranes based on bacterial cellulose

被引:42
|
作者
Gadim, Tiago D. O. [1 ]
Loureiro, Francisco J. A. [1 ,3 ]
Vilela, Carla [2 ]
Rosero-Navarro, Nataly [1 ,4 ]
Silvestre, Armando J. D. [2 ]
Freire, Carmen S. R. [2 ]
Figueiredo, Filipe M. L. [1 ]
机构
[1] Univ Aveiro, Dept Mat & Ceram Engn, CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Dept Chem, CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal
[3] Univ Aveiro, Dept Mech Engn, Nanotechnol Res Div, Ctr Mech Technol & Automat, Aveiro, Portugal
[4] Hokkaido Univ, Fac Engn, Div Appl Chem, Sapporo, Hokkaido 0608628, Japan
关键词
Bacterial cellulose; poly(4-styrene sulfonic acid); Nanocomposite membrane; Protonic conductivity; Fuel cell; POLYMER ELECTROLYTE MEMBRANES; THROUGH-PLANE; COMPOSITE MEMBRANES; EXCHANGE MEMBRANES; PEMFCS; TRANSPORT; PROGRESS;
D O I
10.1016/j.electacta.2017.02.145
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The effect of the preferential orientation of supporting bacterial cellulose (BC) nanofibrils on the conductivity of composite proton conducting electrolytes with poly(4-styrene sulfonic acid) (PSSA) is reported. Data obtained by impedance spectroscopy show that the in-plane conductivity at 40% relative humidity (RH) is more than half order of magnitude higher than that measured through-plane, indicating significant discontinuity of proton transport at the PSSA/BC interface. The difference becomes less than 20% in nearly saturated conditions (98% RH), demonstrating the key role of water in ensuring proton transport through those interfaces. The negative impact of the conductivity anisotropy in fuel cell performance is mitigated due to operation in wet conditions and fuel cell tests of PSSA/BC-based membrane electrode assemblies under humidified hydrogen/air gradients at room temperature yield 40 mW cm(-2) at 125 mA cm(-2), which is amongst the highest values reported for a biopolymer-based electrolyte. It also results from the presented investigation that conventional electrode preparation used for thermoplastic polymer electrolytes must be modified in order to ensure proper adhesion to BC-based MEAs and thus to lower polarization losses. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:52 / 61
页数:10
相关论文
共 50 条
  • [1] Preparation of bacterial cellulose/carbon nanotube nanocomposite for biological fuel cell
    Pengfei Lv
    Quan Feng
    Qingqing Wang
    Dawei Li
    Jianbo Zhou
    Qufu Wei
    Fibers and Polymers, 2016, 17 : 1858 - 1865
  • [2] Preparation of Bacterial Cellulose/Carbon Nanotube Nanocomposite for Biological Fuel Cell
    Lv, Pengfei
    Feng, Quan
    Wang, Qingqing
    Li, Dawei
    Zhou, Jianbo
    Wei, Qufu
    FIBERS AND POLYMERS, 2016, 17 (11) : 1858 - 1865
  • [3] Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity
    Tang, Lian
    Han, Jinlu
    Jiang, Zhenlin
    Chen, Shiyan
    Wang, Huaping
    CARBOHYDRATE POLYMERS, 2015, 117 : 230 - 235
  • [4] Nafion based nanocomposite membranes with improved electric and protonic conduction
    Boldeiu, Adina
    Vasile, Eugeniu
    Gavrila, Raluca
    Simion, Monica
    Radoi, Antonio
    Matei, Alina
    Mihalache, Iuliana
    Pascu, Razvan
    Kusko, Mihaela
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2014, 461 : 133 - 141
  • [5] Palladium-bacterial cellulose membranes for fuel cells
    Evans, BR
    O'Neill, HM
    Malyvanh, VP
    Lee, I
    Woodward, J
    BIOSENSORS & BIOELECTRONICS, 2003, 18 (07): : 917 - 923
  • [6] Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications
    Rikarani R. Choudhury
    Sambit Kumar Sahoo
    Jaydevsinh M. Gohil
    Cellulose, 2020, 27 : 6719 - 6746
  • [7] Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications
    Choudhury, Rikarani R.
    Sahoo, Sambit Kumar
    Gohil, Jaydevsinh M.
    CELLULOSE, 2020, 27 (12) : 6719 - 6746
  • [8] Nanostructured Bacterial Cellulose-Poly(4-styrene sulfonic acid) Composite Membranes with High Storage Modulus and Protonic Conductivity
    Gadim, Tiago D. O.
    Figueiredo, Andrea G. P. R.
    Rosero-Navarro, Nataly C.
    Vilela, Carla
    Gamelas, Jose A. F.
    Barros-Timmons, Ana
    Pascoal Neto, Carlos
    Silvestre, Armando J. D.
    Freire, Carmen S. R.
    Figueiredo, Filipe M. L.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) : 7864 - 7875
  • [9] Conductive polysaccharides-based proton-exchange membranes for fuel cell applications: The case of bacterial cellulose and fucoidan
    Vilela, Carla
    Silva, Ana C. Q.
    Domingues, Eddy M.
    Goncalves, Gil
    Martins, Manuel A.
    Figueiredo, Filipe M. L.
    Santos, Sonia A. O.
    Freire, Carmen S. R.
    CARBOHYDRATE POLYMERS, 2020, 230
  • [10] Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells
    Ozdemir, Yagmur
    Uregen, Nurhan
    Devrim, Yilser
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (04) : 2648 - 2657