Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques

被引:113
作者
Nieuwoudt, Arthur [1 ]
Massoud, Yehia [1 ]
机构
[1] Rice Univ, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
carbon nanotube; interconnect; resistance;
D O I
10.1109/TED.2006.882035
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Single-walled carbon nanotube (SWCNT) bundles have the potential to provide an attractive solution for the resistivity and electromigration problems faced by traditional copper interconnects. This paper discusses the modeling of nanotube bundle resistance for on-chip interconnect applications. Based on recent experimental results, the authors model the impact of nanotube diameter on contact and ohmic resistance, which has been largely ignored in previous bundle models. The results indicate that neglecting the diameter-dependent nature of ohmic and contact resistances can produce significant errors. Using the resistance model, it is shown that SWCNT bundles can provide up to one order of magnitude reduction in resistance when, compared with traditional copper interconnects depending on bundle geometry and individual nanotube diameter. Furthermore, for local interconnect applications, an optimum nanotube diameter exists to minimize the resistance of the carbon nanotube bundle.
引用
收藏
页码:2460 / 2466
页数:7
相关论文
共 29 条
[1]  
[Anonymous], 2005, INT TECHNOLOGY ROADM
[2]   Diameter-controlled synthesis of carbon nanotubes [J].
Cheung, CL ;
Kurtz, A ;
Park, H ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (10) :2429-2433
[3]   High-field quasiballistic transport in short carbon nanotubes [J].
Javey, A ;
Guo, J ;
Paulsson, M ;
Wang, Q ;
Mann, D ;
Lundstrom, M ;
Dai, HJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (10) :106804-1
[4]   Technology and reliability constrained future copper interconnects - Part I: Resistance modeling [J].
Kapur, P ;
McVittie, JP ;
Saraswat, KC .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (04) :590-597
[5]   Electrical contacts to carbon nanotubes down to 1 nm in diameter [J].
Kim, W ;
Javey, A ;
Tu, R ;
Cao, J ;
Wang, Q ;
Dai, HJ .
APPLIED PHYSICS LETTERS, 2005, 87 (17) :1-3
[6]   Quantum interference and ballistic transmission in nanotube electron waveguides [J].
Kong, J ;
Yenilmez, E ;
Tombler, TW ;
Kim, W ;
Dai, HJ ;
Laughlin, RB ;
Liu, L ;
Jayanthi, CS ;
Wu, SY .
PHYSICAL REVIEW LETTERS, 2001, 87 (10) :1-106801
[7]   Carbon nanotubes for interconnect applications [J].
Kreupl, F ;
Graham, AP ;
Liebau, M ;
Duesberg, GS ;
Seidel, R ;
Unger, E .
IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, :683-686
[8]   Separation of metallic from semiconducting single-walled carbon nanotubes [J].
Krupke, R ;
Hennrich, F ;
von Löhneysen, H ;
Kappes, MM .
SCIENCE, 2003, 301 (5631) :344-347
[9]  
LEONARD F, 2006, ARXIV CONDENSED MATT
[10]   Bottom-up approach for carbon nanotube interconnects [J].
Li, J ;
Ye, Q ;
Cassell, A ;
Ng, HT ;
Stevens, R ;
Han, J ;
Meyyappan, M .
APPLIED PHYSICS LETTERS, 2003, 82 (15) :2491-2493