Global existence and asymptotic behavior for a time fractional reaction-diffusion system

被引:15
|
作者
Alsaedi, Ahmed [1 ]
Kirane, Mokhtar [2 ]
Lassoued, Rafika [3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Univ La Rochelle, Lab Sci Ingn Environnm Poles Sci & Technol, Ave Michel Crepeau, F-17000 La Rochelle 1, France
[3] Labo Math Appl & Analyse Harmon, Ave Environnm, Monastir 5019, Tunisia
关键词
Fractional calculus; Reaction-diffusion equations; Balance law; Global existence; Asymptotic behavior; EQUATIONS;
D O I
10.1016/j.camwa.2016.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of global in time solutions of a time fractional reaction diffusion system with time fractional derivatives. Furthermore, the large time behavior of bounded solutions is investigated. Our method of proof relies on a maximal regularity result for fractional linear reaction diffusion equations that has been derived by Bajlekova (2001). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:951 / 958
页数:8
相关论文
共 50 条
  • [31] Global Existence and Asymptotic Stability for a Class of Coupled Reaction-Diffusion Systems on Growing Domains
    Douaifia, Redouane
    Abdelmalek, Salem
    Bendoukha, Samir
    ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
  • [32] Global Existence and Asymptotic Stability for a Class of Coupled Reaction-Diffusion Systems on Growing Domains
    Redouane Douaifia
    Salem Abdelmalek
    Samir Bendoukha
    Acta Applicandae Mathematicae, 2021, 171
  • [33] GLOBAL EXISTENCE FOR LAPLACE REACTION-DIFFUSION EQUATIONS
    Favini, Angelo
    Yagi, Atsushi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (05): : 1473 - 1493
  • [34] GLOBAL EXISTENCE AND BOUNDEDNESS IN REACTION-DIFFUSION SYSTEMS
    HOLLIS, SL
    MARTIN, RH
    PIERRE, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) : 744 - 761
  • [35] Global existence for quadratic systems of reaction-diffusion
    Desvillettes, Laurent
    Fellner, Klemens
    Pierre, Michel
    Vovelle, Julien
    ADVANCED NONLINEAR STUDIES, 2007, 7 (03) : 491 - 511
  • [36] Global existence for coupled reaction-diffusion systems
    Boudiba, N
    Pierre, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (01) : 1 - 12
  • [37] Extended Global Asymptotic Stability Conditions for a Generalized Reaction-Diffusion System
    Abdelmalek, Salem
    Bendoukha, Samir
    Rebiai, Belgacem
    Kirane, Mokhtar
    ACTA APPLICANDAE MATHEMATICAE, 2019, 160 (01) : 1 - 20
  • [38] Global Existence and Finite Time Blow-up for a Reaction-Diffusion System with Three Components
    Li, Huiling
    Zhang, Yang
    ACTA APPLICANDAE MATHEMATICAE, 2017, 151 (01) : 121 - 148
  • [39] Asymptotic stability of an epidemiological fractional reaction-diffusion model
    Djebara, Lamia
    Abdelmalek, Salem
    Bendoukha, Samir
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [40] Local existence and nonexistence for fractional in time weakly coupled reaction-diffusion systems
    Suzuki, Masamitsu
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (01):