Global existence and asymptotic behavior for a time fractional reaction-diffusion system

被引:15
作者
Alsaedi, Ahmed [1 ]
Kirane, Mokhtar [2 ]
Lassoued, Rafika [3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Univ La Rochelle, Lab Sci Ingn Environnm Poles Sci & Technol, Ave Michel Crepeau, F-17000 La Rochelle 1, France
[3] Labo Math Appl & Analyse Harmon, Ave Environnm, Monastir 5019, Tunisia
关键词
Fractional calculus; Reaction-diffusion equations; Balance law; Global existence; Asymptotic behavior; EQUATIONS;
D O I
10.1016/j.camwa.2016.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of global in time solutions of a time fractional reaction diffusion system with time fractional derivatives. Furthermore, the large time behavior of bounded solutions is investigated. Our method of proof relies on a maximal regularity result for fractional linear reaction diffusion equations that has been derived by Bajlekova (2001). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:951 / 958
页数:8
相关论文
共 21 条
  • [1] Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method
    Abdelmalek, Salem
    Kouachi, Said
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (41) : 12335 - 12350
  • [2] On Nonlinear Nonlocal Systems of Reaction Diffusion Equations
    Ahmad, B.
    Alhothuali, M. S.
    Alsulami, H. H.
    Kirane, M.
    Timoshin, S.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [3] MAXIMUM PRINCIPLE FOR CERTAIN GENERALIZED TIME AND SPACE FRACTIONAL DIFFUSION EQUATIONS
    Alsaedi, Ahmed
    Ahmad, Bashir
    Kirane, Mokhtar
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (01) : 163 - 175
  • [4] [Anonymous], 2001, THESIS
  • [5] [Anonymous], 2000, Applications of Fractional Calculus in Physics
  • [6] [Anonymous], 1987, FRACTIONAL INTEGRALS
  • [7] Fan Z., 2013, NONLINEAR STUD, V20, P491
  • [8] Henry B. I., 2005, PHYS REV, V72, P14
  • [9] Henry D., 1981, GEOMETRIC THEORY SEM
  • [10] GLOBAL EXISTENCE AND BOUNDEDNESS IN REACTION-DIFFUSION SYSTEMS
    HOLLIS, SL
    MARTIN, RH
    PIERRE, M
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) : 744 - 761