Global existence and asymptotic behavior for a time fractional reaction-diffusion system

被引:15
作者
Alsaedi, Ahmed [1 ]
Kirane, Mokhtar [2 ]
Lassoued, Rafika [3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Univ La Rochelle, Lab Sci Ingn Environnm Poles Sci & Technol, Ave Michel Crepeau, F-17000 La Rochelle 1, France
[3] Labo Math Appl & Analyse Harmon, Ave Environnm, Monastir 5019, Tunisia
关键词
Fractional calculus; Reaction-diffusion equations; Balance law; Global existence; Asymptotic behavior; EQUATIONS;
D O I
10.1016/j.camwa.2016.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of global in time solutions of a time fractional reaction diffusion system with time fractional derivatives. Furthermore, the large time behavior of bounded solutions is investigated. Our method of proof relies on a maximal regularity result for fractional linear reaction diffusion equations that has been derived by Bajlekova (2001). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:951 / 958
页数:8
相关论文
共 21 条
[1]   Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method [J].
Abdelmalek, Salem ;
Kouachi, Said .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (41) :12335-12350
[2]   On Nonlinear Nonlocal Systems of Reaction Diffusion Equations [J].
Ahmad, B. ;
Alhothuali, M. S. ;
Alsulami, H. H. ;
Kirane, M. ;
Timoshin, S. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[3]   MAXIMUM PRINCIPLE FOR CERTAIN GENERALIZED TIME AND SPACE FRACTIONAL DIFFUSION EQUATIONS [J].
Alsaedi, Ahmed ;
Ahmad, Bashir ;
Kirane, Mokhtar .
QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (01) :163-175
[4]  
[Anonymous], 2001, THESIS
[5]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[6]  
[Anonymous], 1987, FRACTIONAL INTEGRALS
[7]  
Fan Z., 2013, NONLINEAR STUD, V20, P491
[8]  
Henry B. I., 2005, PHYS REV, V72, P14
[9]  
Henry D., 1981, GEOMETRIC THEORY SEM
[10]   GLOBAL EXISTENCE AND BOUNDEDNESS IN REACTION-DIFFUSION SYSTEMS [J].
HOLLIS, SL ;
MARTIN, RH ;
PIERRE, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :744-761